首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   27篇
  国内免费   1篇
  2022年   2篇
  2021年   3篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   10篇
  2015年   9篇
  2014年   13篇
  2013年   36篇
  2012年   31篇
  2011年   38篇
  2010年   13篇
  2009年   17篇
  2008年   33篇
  2007年   19篇
  2006年   24篇
  2005年   24篇
  2004年   24篇
  2003年   18篇
  2002年   20篇
  2001年   4篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   5篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1992年   8篇
  1991年   4篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   8篇
  1980年   2篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1953年   2篇
  1952年   3篇
排序方式: 共有454条查询结果,搜索用时 19 毫秒
151.
Magnesium ion (Mg2+) is an essential metal element for life, and has many cellular functions, including ATP utilization, activation of enzymes, and maintenance of genomic stability. The intracellular Mg2+ concentration is regulated by a class of transmembrane proteins, called Mg2+ transporters. One of the prokaryotic Mg2+ transporters, MgtE, is a 450-residue protein, and functions as a dimer. We previously reported that MgtE exhibits the channel-like electrophysiological property, i.e., it permeates Mg2+ according to the electrochemical potential of Mg2+. The Mg2+-permeation pathway opens in response to the decrease of the intracellular Mg2+ concentration, while it is completely closed at the intracellular Mg2+ concentration of 10 mM. The crystal structures of the MgtE dimer revealed that the Mg2+-sensing cytoplasmic region consists of the N and CBS domains. The Mg2+-bound state of MgtE adopts a compact, globular conformation, which is stabilized by the coordination of a number of Mg2+ ions between these domains. On the other hand, in the Mg2+-unbound state, these domains are far apart, and fixed by the crystal packing. Therefore, structural analyses in solution were awaited, in order to characterize the Mg2+-dependent alteration of the MgtE structure and dynamics relevant to its gating. In this paper, we report the backbone resonance assignments of the dimer of the cytoplasmic region of the MgtE from Thermus thermophilus with a molecular weight of 60 KDa, in the Mg2+-unbound state.  相似文献   
152.

Background

Recent studies have revealed relative frequency and characteristic phenotype of two major causative factors for Silver-Russell syndrome (SRS), i.e. epimutation of the H19-differentially methylated region (DMR) and uniparental maternal disomy 7 (upd(7)mat), as well as multilocus methylation abnormalities and positive correlation between methylation index and body and placental sizes in H19-DMR epimutation. Furthermore, rare genomic alterations have been found in a few of patients with idiopathic SRS. Here, we performed molecular and clinical findings in 138 Japanese SRS patients, and examined these matters.

Methodology/Principal Findings

We identified H19-DMR epimutation in cases 1–43 (group 1), upd(7)mat in cases 44–52 (group 2), and neither H19-DMR epimutation nor upd(7)mat in cases 53–138 (group 3). Multilocus analysis revealed hyper- or hypomethylated DMRs in 2.4% of examined DMRs in group 1; in particular, an extremely hypomethylated ARHI-DMR was identified in case 13. Oligonucleotide array comparative genomic hybridization identified a ∼3.86 Mb deletion at chromosome 17q24 in case 73. Epigenotype-phenotype analysis revealed that group 1 had more reduced birth length and weight, more preserved birth occipitofrontal circumference (OFC), more frequent body asymmetry and brachydactyly, and less frequent speech delay than group 2. The degree of placental hypoplasia was similar between the two groups. In group 1, the methylation index for the H19-DMR was positively correlated with birth length and weight, present height and weight, and placental weight, but with neither birth nor present OFC.

Conclusions/Significance

The results are grossly consistent with the previously reported data, although the frequency of epimutations is lower in the Japanese SRS patients than in the Western European SRS patients. Furthermore, the results provide useful information regarding placental hypoplasia in SRS, clinical phenotypes of the hypomethylated ARHI-DMR, and underlying causative factors for idiopathic SRS.  相似文献   
153.
Buckwheat, Fagopyrum tataricum Gaertn., is an important medicinal plant, which contains several phenolic compounds, including one of the highest content of rutin, a phenolic compound with anti-inflammatory properties. An experiment was conducted to investigate the level of expression of various genes in the phenylpropanoid biosynthetic pathway to analyze in vitro production of anthocyanin and phenolic compounds from hairy root cultures derived from 2 cultivars of tartary buckwheat (Hokkai T8 and T10). A total of 47 metabolites were identified by gas chromatography–time-of-flight mass spectrometry (GC-TOFMS) and subjected to principal component analysis (PCA) in order to fully distinguish between Hokkai T8 and T10 hairy roots. The expression levels of phenylpropanoid biosynthetic pathway genes, through qRT-PCR, showed higher expression for almost all the genes in T10 than T8 hairy root except for FtF3’H-2 and FtFLS-2. Rutin, quercetin, gallic acid, caffeic acid, ferulic acid, 4-hydroxybenzoic acid, and 2 anthocyanin compounds were identified in Hokkai T8 and T10 hairy roots. The concentration of rutin and anthocyanin in Hokkai T10 hairy roots of tartary buckwheat was several-fold higher compared with that obtained from Hokkai T8 hairy root. This study provides useful information on the molecular and physiological dynamic processes that are correlated with phenylpropanoid biosynthetic gene expression and phenolic compound content in F. tataricum species.  相似文献   
154.
l-Asparaginase [EC 3.5.1.1], antitumor enzyme, was purified to a crystalline form from the cell free extract of Escherichia coli A-l-3 KY3598, by ethanol fractionation and chromatographies on DEAE cellulose and CM Sephadex. The crystalline enzyme was homogeneous by the criteria of ultracentrifugation: s20, w was 7.87S.

The molecular weight was estimated to be 141,000 by the short column method. The pI of the enzyme protein was 4.75 according to isoelectric electrofocusing.

Amino acid analysis revealed the absence of cysteine or cystine residues in the molecule.

The enzyme exhibited optimal activity between pH 6 and 8. It was stable in the pH range 5.5 ~ 9.0.

The enzyme activity was cleared very slowly in the plasma of dog. Intravenous administration of the enzyme caused a complete regression of the Gardner lymphoma implanted in the C3H mice.  相似文献   
155.
Glucansucrase (GSase) from Streptococcus mutans is an essential agent in dental caries pathogenesis. Here, we report the crystal structure of S. mutans glycosyltransferase (GTF-SI), which synthesizes soluble and insoluble glucans and is a glycoside hydrolase (GH) family 70 GSase in the free enzyme form and in complex with acarbose and maltose. Resolution of the GTF-SI structure confirmed that the domain order of GTF-SI is circularly permuted as compared to that of GH family 13 α-amylases. As a result, domains A, B and IV of GTF-SI are each composed of two separate polypeptide chains. Structural comparison of GTF-SI and amylosucrase, which is closely related to GH family 13 amylases, indicated that the two enzymes share a similar transglycosylation mechanism via a glycosyl-enzyme intermediate in subsite − 1. On the other hand, novel structural features were revealed in subsites + 1 and + 2 of GTF-SI. Trp517 provided the platform for glycosyl acceptor binding, while Tyr430, Asn481 and Ser589, which are conserved in family 70 enzymes but not in family 13 enzymes, comprised subsite + 1. Based on the structure of GTF-SI and amino acid comparison of GTF-SI, GTF-I and GTF-S, Asp593 in GTF-SI appeared to be the most critical point for acceptor sugar orientation, influencing the transglycosylation specificity of GSases, that is, whether they produced insoluble glucan with α(1-3) glycosidic linkages or soluble glucan with α(1-6) linkages. The structural information derived from the current study should be extremely useful in the design of novel inhibitors that prevent the biofilm formation by GTF-SI.  相似文献   
156.
Natural products have been utilized for drug discovery. To increase the source diversity, we generated a new chemical library consisting of chemically modified microbial metabolites termed 'Unnatural Natural Products' by chemical conversion of microbial metabolites in crude broth extracts followed by purification of reaction products with the LC-photo diode array-MS system. Using this library, we discovered an XIAP inhibitor, C38OX6, which restored XIAP-suppressed enzymatic activity of caspase-3 in vitro. Furthermore, C38OX6 sensitized cancer cells to anticancer drugs, whereas the unconverted natural product did not. These findings suggest that our library could be a useful source for drug seeds.  相似文献   
157.
Using expression analysis, the role of the sucrose transporter OsSUT1 during germination and early growth of rice seedlings has been examined in detail, over a time-course ranging from 1 d to 7 d post-imbibition. Unlike the wheat orthologue, TaSUT1, which is thought to be directly involved in sugar transfer across the scutellar epithelium, OsSUT1 is not expressed in the scutellar epithelial cell layer of germinating rice and is, therefore, not involved in transport of sugars across the symplastic discontinuity between the endosperm and the embryo. OsSUT1 expression was also absent from the aleurone cells, indicating it is not involved in the transport of sucrose in this cell layer during germination. However, by 3 d post-imbibition, OsSUT1 was present in the companion cells and sieve elements of the scutellar vascular bundle, where it may play a role in phloem loading of sucrose for transport to the developing shoot and roots. This sucrose is most likely sourced from hexoses imported from the endosperm. In addition, sucrose may be remobilized from starch granules which are present at a high density in the scutellar ground tissues surrounding the vasculature and at the base of the shoot. OsSUT1 was also present in the coleoptile and the first and second leaf blades, where it was localized to the phloem along the entire length of these tissues, and was also present within the phloem of the primary roots. OsSUT1 may be involved in retrieval of sugars from the apoplasm in these tissues.  相似文献   
158.
A novel LAGLIDADG-type homing endonuclease (HEase), I-Tsp061I, from the hyperthermophilic archaeon Thermoproteus sp. IC-061 16 S rRNA gene (rDNA) intron was characterized with respect to its structure, catalytic properties and thermostability. It was found that I-Tsp061I is a HEase isoschizomer of the previously described I-PogI and exhibits the highest thermostability among the known LAGLIDADG-type HEases. Determination of the crystal structure of I-Tsp061I at 2.1 A resolution using the multiple isomorphous replacement and anomalous scattering method revealed that the overall fold is similar to that of other known LAGLIDADG-type HEases, despite little sequence similarity between I-Tsp061I and those HEases. However, I-Tsp061I contains important cross-domain polar networks, unlike its mesophilic counterparts. Notably, the polar network Tyr6-Asp104-His180-107O-HOH12-104O-Asn177 exists across the two packed alpha-helices containing both the LAGLIDADG catalytic motif and the GxxxG hydrophobic helix bundle motif. Another important structural feature is the salt-bridge network Asp29-Arg31-Glu182 across N and C-terminal domain interface, which appears to contribute to the stability of the domain/domain packing. On the basis of these structural analyses and extensive mutational studies, we conclude that such cross-domain polar networks play key roles in stabilizing the catalytic center and domain packing, and underlie the hyperthermostability of I-Tsp061I.  相似文献   
159.
C-Terminal protein labeling allows non-radioactive detection of proteins by using fluorescent puromycin derivatives and cell-free translation systems. However, yields of some labeled proteins are low. Here, we report that the yield of labeled protein mainly depends on the C-terminal amino acid sequence. The short peptide tag sequence, RGAA, at the C-terminus increased not only the labeling efficiency (more than 80%) but also the synthesis yield of labeled proteins. To examine the relationship between the C-terminal amino acid sequence and the yield of labeled proteins, we synthesized C-terminally labeled glutathione S-transferase (GST) containing four identical amino acid residues at the C-terminus. The results demonstrated that 4 × Ala, 4 × His, 4 × Gln, and 4 × Cys produced over 200% of the yield of wild-type GST. In addition, the two Ala residues produced almost the same synthesis activity as 4 × Ala and RGAA. Similar results were obtained with various proteins and cell-free translation systems.  相似文献   
160.
Strain 76, which was able to utilize dimethyl disulfide (DMDS) as a sole sulfur source, was screened from our microbial collection. It was identified as Pseudomonas fluorescens by taxonomical characterization and 16S rDNA sequence analysis. It does not belong to the methylotrophs, because it did not grow on DMDS or other C1 compounds as sole carbon source, and DMDS degradation was not repressed in the presence of glucose, Na(2)SO(4), or nutrient broth. Moreover, it showed high resistance to DMDS by growing in DMDS at concentrations up to 9.04 mM. Based on these findings, strain 76 metabolizes DMDS and has dual physiological roles: sulfur assimilation and degradation. Thus it has advantages as a biological scavenger of DMDS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号