首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   40篇
  国内免费   1篇
  2022年   6篇
  2021年   9篇
  2019年   5篇
  2018年   9篇
  2017年   8篇
  2016年   14篇
  2015年   17篇
  2014年   19篇
  2013年   43篇
  2012年   32篇
  2011年   44篇
  2010年   19篇
  2009年   20篇
  2008年   40篇
  2007年   29篇
  2006年   36篇
  2005年   38篇
  2004年   40篇
  2003年   38篇
  2002年   29篇
  2001年   15篇
  2000年   20篇
  1999年   13篇
  1998年   6篇
  1997年   6篇
  1995年   4篇
  1993年   6篇
  1992年   18篇
  1991年   7篇
  1990年   8篇
  1988年   12篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   10篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1970年   3篇
  1969年   3篇
  1967年   2篇
  1966年   2篇
  1953年   2篇
  1952年   3篇
排序方式: 共有699条查询结果,搜索用时 15 毫秒
21.
22.
The accumulation of reactive aldehydes is implicated in the development of several disorders. Aldehyde dehydrogenases (ALDHs) detoxify aldehydes by oxidizing them to the corresponding carboxylic acids. Among the 19 human ALDHs, ALDH3A2 is the only known ALDH that catalyzes the oxidation of long-chain fatty aldehydes including C16 aldehydes (hexadecanal and trans-2-hexadecenal) generated through sphingolipid metabolism. In the present study, we have identified that ALDH3B1 is also active in vitro toward C16 aldehydes and demonstrated that overexpression of ALDH3B1 restores the sphingolipid metabolism in the ALDH3A2-deficient cells. In addition, we have determined that ALDH3B1 is localized in the plasma membrane through its C-terminal dual lipidation (palmitoylation and prenylation) and shown that the prenylation is required particularly for the activity toward hexadecanal. Since knockdown of ALDH3B1 does not cause further impairment of the sphingolipid metabolism in the ALDH3A2-deficient cells, the likely physiological function of ALDH3B1 is to oxidize lipid-derived aldehydes generated in the plasma membrane and not to be involved in the sphingolipid metabolism in the endoplasmic reticulum.  相似文献   
23.
The selenium (Se)-containing antioxidant selenoneine (2-selenyl-N α,N α,N α-trimethyl-l-histidine) has recently been discovered to be the predominant form of organic Se in tuna blood. Although dietary intake of fish Se has been suggested to reduce methylmercury (MeHg) toxicity, the molecular mechanism of MeHg detoxification by Se has not yet been determined. Here, we report evidence that selenoneine accelerates the excretion and demethylation of MeHg, mediated by a selenoneine-specific transporter, organic cations/carnitine transporter-1 (OCTN1). Selenoneine was incorporated into human embryonic kidney HEK293 cells transiently overexpressing OCTN1 and zebrafish blood cells by OCTN1. The K m for selenoneine uptake was 13.0 μM in OCTN1-overexpressing HEK293 cells and 9.5 μM in zebrafish blood cells, indicating high affinity of OCTN1 for selenoneine in human and zebrafish cells. When such OCTN1-expressing cells and embryos were exposed to MeHg–cysteine (MeHgCys), MeHg accumulation was decreased and the excretion and demethylation of MeHg were enhanced by selenoneine. In addition, exosomal secretion vesicles were detected in the culture water of embryos that had been microinjected with MeHgCys, suggesting that these may be responsible for MeHg excretion and demethylation. In contrast, OCTN1-deficient embryos accumulated MeHg, and MeHg excretion and demethylation were decreased. Furthermore, Hg accumulation was decreased in OCTN1-overexpressing HEK293 cells, but not in mock vector-transfected cells, indicating that selenoneine and OCTN1 can regulate MeHg detoxification in human cells. Thus, the selenoneine-mediated OCTN1 system regulates secretory lysosomal vesicle formation and MeHg demethylation.  相似文献   
24.
Asymmetrical secretion of vascular endothelial growth factor (VEGF) by retinal pigment epithelial (RPE) cells in situ is critical for maintaining the homeostasis of the retina and choroid. VEGF is also involved in the development and progression of age-related macular degeneration (AMD). We studied the effect of tumor necrosis factor-α (TNF-α) on the secretion of VEGF in polarized and non-polarized RPE cells (P-RPE cells and N-RPE cells, respectively) in culture and in situ in rats. A subretinal injection of TNF-α caused a decrease in VEGF expression and choroidal atrophy. Porcine RPE cells were seeded on Transwell™ filters, and their maturation and polarization were confirmed by the asymmetrical VEGF secretion and trans electrical resistance. Exposure to TNF-α decreased the VEGF secretion in P-RPE cells but increased it in N-RPE cells in culture. TNF-α inactivated JNK in P-RPE cells but activated it in N-RPE cells, and TNF-α activated NF-κB in P-RPE cells but not in N-RPE cells. Inhibition of NF-κB activated JNK in both types of RPE cells indicating crosstalk between JNK and NF-κB. TNF-α induced the inhibitory effects of NF-κB on JNK in P-RPE cells because NF-κB is continuously inactivated. In N-RPE cells, however, it was not evident because NF-κB was already activated. The basic activation pattern of JNK and NF-κB and their crosstalk led to opposing responses of RPE cells to TNF-α. These results suggest that VEGF secretion under inflammatory conditions depends on cellular polarization, and the TNF-α-induced VEGF down-regulation may result in choroidal atrophy in polarized physiological RPE cells. TNF-α-induced VEGF up-regulation may cause neovascularization by non-polarized or non-physiological RPE cells.  相似文献   
25.
26.
East Tiaoxi River is one of the largest inflowing rivers into Taihu Lake, and the fish fauna in the river is poorly understood. In the present study, an extensive survey of fish was conducted in October and November 2009, May and September 2010 and May 2011 covering a total of 55 sites along the whole river. A total of 84 freshwater fish species belonging to 8 orders, 18 families and 52 genera have been recorded. Among these are 35 species endemic to China, and 3 newly recorded exotic species. The fish composition varies greatly from headwaters to downstream. Based on cluster analysis with presence-absence data, the East Tiaoxi River is divided into four regions, specifically, the upper reach, middle-up reach, middle reach and lower reach. It is observed that species richness and the proportion of omnivorous species increased from upstream to downstream while the proportion of invertivorous species decreased consequently. Habitat alteration, overfishing, pollution and inland navigation adversely affect the fish diversity and ecosystem functioning in the East Tiaoxi River. To protect fish diversity more effectively in the area, the conservation of fish biodiversity in the North Tiaoxi River and Middle Tiaoxi River should be considered as a priority. Meanwhile, shallow zones or backwater areas should be created in the middle-lower reaches. Furthermore, river restoration, in terms of habitat creation, should be considered to protect the structure and diversity of fish communities, halt the progressive deterioration of freshwater ecosystems and sustain a valuable ecological resource for humans.  相似文献   
27.
28.
1-Pyrroline-5-carboxylate dehydrogenase was purified and crystallized from Bacillus sphaericus. The crystalline preparation gave a single band on polyacrylamide slab gel electrophoresis. The molecular weight of the enzyme was determined to be about 100,000 by gel filtration. The enzyme consists of two subunits which are identical in molecular weight (50,000), as judged on SDS slab gel electrophoresis. The enzyme shows an optimum pH of 6.5 to 7.0. Its activity was 8.1 times higher with NADP+ than with NAD +, and the enzyme was stabilized by NADP+. The apparent Km values for l-l-pyrroline-5-carboxylate, NADP+ and NAD+ are 4.2 × 10–5m (with NADP+), 9.5 × 10~6m and 2.5 × IO-3 m, respectively. The enzyme reaction is irreversible. A simple method for the determination of l-ornithine involving ornithine ¿-aminotransferase and 1- pyrroline-5-carboxylate dehydrogenase from B. sphaericus was developed. A linear relationship was found between the absorbance at 340 nm and the amount of l-ornithine (50 ~ 400 nmol), and between the fluorescence and the amount of l-ornithine (0.2 ~ 10 nmol).  相似文献   
29.

Background

The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce.

Methodology/Principal Findings

We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern.

Conclusions/Significance

In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history.  相似文献   
30.

Key message

Elevated CO 2 reduced fine root dynamics (production and turnover) of white birch seedlings, especially grown in volcanic ash soil compared with brown forest soil.

Abstract

Increased atmospheric CO2 usually enhances photosynthetic ability and growth of trees. To understand how increased CO2 affects below-ground part of trees under varied soil condition, we investigated the responses of the fine root (diameter <2 mm) dynamics of Japanese white birch (Betula platyphylla var. japonica) which was planted in 2010. The three-year-old birch seedlings were grown in four experimental treatments comprising two levels of CO2, i.e., ambient: 380–390 and elevated: 500 μmol mol?1, in combination with two kinds of soil: brown forest (BF) soil and volcanic ash (VA) soil which has few nutrients. The growth and turnover of fine roots were measured for 3 years (2011–2013) using the Mini-rhizotron. In the first observation year, live fine root length (standing crop) in BF soil was not affected by CO2 treatment, but it was reduced by the elevated CO2 from the second observation year. In VA soil, live fine root length was reduced by elevated CO2 for all 3 years. Fine root turnover tended to decrease under elevated CO2 compared with ambient in both soil types during the first and second observation years. Turnover of fine root production and mortality was also affected by the two factors, elevated CO2 and different soil types. Median longevity of fine root increased under elevated CO2, especially in VA soil at the beginning, and a shorter fine root lifespan appeared after 2 years of observation (2011–2012). These results suggest that elevated CO2 does not consistently stimulate fine root turnover, particularly during the plant seedlings stage, as it may depend on the costs and benefits of constructing and retaining roots. Therefore, despite the other uncontrollable environment factors, carbon sequestration to the root system may be varied by CO2 treatment period, soil type and plant age.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号