首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1435篇
  免费   142篇
  1577篇
  2021年   10篇
  2019年   10篇
  2018年   11篇
  2017年   13篇
  2016年   20篇
  2015年   44篇
  2014年   39篇
  2013年   85篇
  2012年   77篇
  2011年   80篇
  2010年   48篇
  2009年   52篇
  2008年   74篇
  2007年   101篇
  2006年   92篇
  2005年   98篇
  2004年   66篇
  2003年   78篇
  2002年   90篇
  2001年   15篇
  2000年   10篇
  1999年   22篇
  1998年   32篇
  1997年   26篇
  1996年   16篇
  1995年   12篇
  1994年   16篇
  1993年   27篇
  1992年   25篇
  1991年   16篇
  1990年   15篇
  1989年   16篇
  1988年   11篇
  1987年   16篇
  1986年   17篇
  1985年   17篇
  1984年   15篇
  1983年   16篇
  1982年   15篇
  1981年   15篇
  1980年   19篇
  1979年   8篇
  1978年   7篇
  1977年   6篇
  1976年   14篇
  1975年   12篇
  1974年   11篇
  1973年   10篇
  1972年   5篇
  1971年   4篇
排序方式: 共有1577条查询结果,搜索用时 15 毫秒
91.
Summary The nrtA gene, which has been proposed to be involved in nitrate transport of Synechococcus sp. PCC7942 (Anacystis nidulans R2), was mapped at 3.9 kb upstream of the nitrate reductase gene, narB. Three closely linked genes (designated nrtB, nrtC, and nrtD), which encode proteins of 279, 659, and 274 amino acids, respectively, were found between the nrtA and narB genes. NrtB is a hydrophobic protein having structural similarity to the integral membrane components of bacterial transport systems that are dependent on periplasmic substrate-binding proteins. The N-terminal portion of NrtC (amino acid residues 1–254) and NrtD are 58% identical to each other in their amino acid sequences, and resemble the ATP-binding components of binding protein-dependent transport systems. The C-terminal portion of NrtC is 30% identical to NrtA. Mutants constructed by interrupting each of nrtB and nrtC were unable to grow on nitrate, and the nrtD mutant required high concentration of nitrate for growth. The rate of nitrate-dependent O2 evolution (photosynthetic O2 evolution coupled to nitrate reduction) in wild-type cells measured in the presence of l-methionine d,l-sulfoximine and glycolaldehyde showed a dual-phase relationship with nitrate concentration. It followed saturation kinetics up to 10 mM nitrate (the concentration required for half-saturation = 1 M), and the reaction rate then increased above the saturation level of the first phase as the nitrate concentration increased. The high-affinity phase of nitrate-dependent O2 evolution was absent in the nrtD mutant. The results suggest that there are two independent mechanisms of nitrate uptake and that the nrtB-nrtC-nrtD cluster encodes a high-affinity nitrate transport system.  相似文献   
92.
Previous publications showed that a covalently closed circular (CCC) Rts1 plasmid deoxyribonucleic acid (DNA) that confers kanamycin resistance upon the host bacteria inhibits host growth at 42 degrees C but not at 32 degrees C. At 42 degrees C, the CCC Rts1 DNA is not formed, and cells without plasmids emerge. To investigate the possible role of cyclic adenosine 3',5'-monophosphate (cAMP) in the action of Rts1 on host bacteria, Rts1 was placed in an Escherichia coli mutant (CA7902) that lacks adenylate cyclase or in E. coli PP47 (a mutant lacking cAMP receptor protein). Rts1 did not exert the thermosensitive effect on these cells, and CCC Rts1 DNA was formed even at 42 degrees C. Upon addition of cAMP to E. coli CA7902(Rts1), cell growth and formation of CCC Rts1 DNA were inhibited at 42 degrees C. The addition of cAMP to E. coli PP47(Rts1) did not cause inhibitory effects on either cell growth or CCC Rts1 DNA formation at 42 degrees C. The inhibitory effect of cAMP on E. coli CA7902(Rts1) is specific to this cyclic nucleotide, and other cyclic nucleotides such as cyclic guanosine 3',5'-monophosphate did not have the effect. For this inhibitory effect, cells have to be preincubated with cAMP; the presence of cAMP at the time of CCC Rts1 DNA formation is not enough for the inhibitory effect. If the cells are preincubated with cAMP, one can remove cAMP during the [(3)H]thymidine pulse and still observe its inhibitory effect on the formation of CCC Rts1 DNA. The presence of chloramphenicol during this preincubation period abolished the inhibitory effect of cAMP. These observations suggest that cAMP is necessary to induce synthesis of a protein that inhibits CCC Rts1 DNA formation and cell growth at 42 degrees C.  相似文献   
93.
Capsiate is a nonpungent capsaicin analog, a recently identified principle of the nonpungent red pepper cultivar CH-19 Sweet. In the present study, we report that 2-wk treatment of capsiate increased metabolic rate and promoted fat oxidation at rest, suggesting that capsiate may prevent obesity. To explain these effects, at least in part, we examined uncoupling proteins (UCPs) and thyroid hormones. UCPs and thyroid hormones play important roles in energy expenditure, the maintenance of body weight, and thermoregulation. Two-week treatment of capsiate increased the levels of UCP1 protein and mRNA in brown adipose tissue and UCP2 mRNA in white adipose tissue. This dose of capsiate did not change serum triiodothyronine or thyroxine levels. A single dose of capsiate temporarily raised both UCP1 mRNA in brown adipose tissue and UCP3 mRNA in skeletal muscle. These results suggest that UCP1 and UCP2 may contribute to the promotion of energy metabolism by capsiate, but that thyroid hormones do not.  相似文献   
94.
95.
We cloned from a rat brain cDNA library a novel cDNA and named it a potential synaptic guanine nucleotide exchange factor (GEF) for Arf (synArfGEF (Po)) (GenBank Accession no. AB057643) based on its domain structure and localization. The cloned gene was 7410 bases long with a 3585-bp coding sequence encoding a protein of 1194 amino acids. The deduced protein contained a coiled-coil structure in the N-terminal portion followed by Sec7 and Plekstrin homology (PH) domains. Thus, the protein was a member of the Sec7 family of proteins, GEFs. Conservation of the ADP-ribosylation factor (Arf)-binding sequence suggested that the protein was a GEF for Arf. The gene was expressed specifically in the brain, where it exhibited region-specific expression. The protein was highly enriched in the postsynaptic density (PSD) fraction prepared from the rat forebrain. Uniquely, the protein interacted with PSD-95, SAP97 and Homer/Vesl 1/PSD-Zip45 via its C-terminal PDZ-binding motif and co-localized with these proteins in cultured cortical neurons. These results supported its localization in the PSD. The postsynaptic localization was also supported by immunohistochemical examination of the rat brain. The mRNA for the synArfGEF was also localized to dendrites, as well as somas, of neuronal cells. Thus, both the mRNA and the protein were localized in the postsynaptic compartments. These results suggest a postsynaptic role of synArfGEF in the brain.  相似文献   
96.
97.
The effect of riboflavin on development of hypertension in rats given a high salt diet was studied. Large doses of riboflavin prevented both elevation of blood pressure and rise of cholesterol levels in the serum. The increase in liver monoamine oxidase activity of the rats fed riboflavin was confirmed.  相似文献   
98.
An obligate chemolithoautotroph, Thiobacillus ferrooxidans API 9–3, could utilize amino acids, other than glycine, methionine and phenylalanine, as a sole source of nitrogen. However, both the growth rate and growth yield were lower than those in Fe2+-NH4 -salts medium, suggesting that the ammonium ion was a superior nitrogen source for the strain compared to amino acids. Methionine and phenylalanine strongly inhibited the cell growth on Fe2+-NH4-salts medium at 10 mm. [14C]Glycine could not be taken up into the cells, and this meant the strain could not use glycine as a sole source of nitrogen. The uptake of [14C]leucine into the cells was dependent on the presence of Fe2 +. When the strain was cultured on Fe2 + - leucine (lOmm)-salts medium lacking an inorganic nitrogen source for 5 days at 30°C, 83.5% and 16.5% of the cellular carbon were derived from carbon dioxide and leucine, respectively, indicating that carbon dioxide was a superior carbon source for the bacterium compared to leucine. The ammonium ion did not inhibit the utilization of leucine for cellular carbon. Leucine uptake was markedly inhibited by inhibitors of protein synthesis, such as chloramphenicol (94.3% at 1 mm), streptomycin (57.2% at 5mm) and rifampin (77.2% at 0.1 mm), respectively. Carbon dioxide uptake was also completely inhibited by chloramphenicol at 4mm. These results suggest that the transport of both amino acids and carbon dioxide into the cells was dependent on protein synthesis.  相似文献   
99.
It is widely reported that derivatives of sugar moieties can be used to metabolically label cell surface carbohydrates or inhibit a particular glycosylation. However, few studies address the effect of substitution of the cytidylmonophosphate (CMP) portion on sialyltransferase activities. Here we first synthesized 2'-O-methyl CMP and 5-methyl CMP and then asked if these CMP derivatives are recognized by alpha2,3-sialyltransferases (ST3Gal-III and ST3Gal-IV), alpha2,6-sialyltransferase (ST6Gal-I), and alpha2,8-sialyltransferase (ST8Sia-II, ST8Sia-III, and ST8Sia-IV). We found that ST3Gal-III and ST3Gal-IV but not ST6Gal-I was inhibited by 2'-O-methyl CMP as potently as by CMP, while ST3Gal-III, ST3Gal-IV, and ST6Gal-I were moderately inhibited by 5-methyl CMP. Previously, it was reported that polysialyltransferase ST8Sia-II but not ST8Sia-IV was inhibited by CMP N-butylneuraminic acid. We found that ST8Sia-IV as well as ST8Sia-II and ST8Sia-III are inhibited by 2'-O-methyl CMP as robustly as by CMP and moderately by 5-methyl CMP. Moreover, the addition of CMP, 2'-O-methyl CMP, and 5-methyl CMP to the culture medium resulted in the decrease of polysialic acid expression on the cell surface and NCAM of Chinese hamster ovary cells. These results suggest that 2'-O-methyl CMP and 5-methyl CMP can be used to preferentially inhibit sialyltransferases, in particular, polysialyltransferases in vitro and in vivo. Such inhibition may be useful to determine the function of a carbohydrate synthesized by a specific sialyltransferase such as polysialyltransferase.  相似文献   
100.
Methicillin-resistant Staphylococcus aureus (MRSA) with ST59/SCCmecV and Panton-Valentine leukocidin gene is a major community-acquired MRSA (CA-MRSA) lineage in Taiwan and has been multidrug-resistant since its initial isolation. In this study, we studied the acquisition mechanism of multidrug resistance in an ST59 CA-MRSA strain (PM1) by comparative genomics. PM1’s non-β-lactam resistance was encoded by two unique genetic traits. One was a 21,832-bp composite mobile element structure (MESPM1), which was flanked by direct repeats of enterococcal IS1216V and was inserted into the chromosomal sasK gene; the target sequence (att) was 8 bp long and was duplicated at both ends of MESPM1. MESPM1 consisted of two regions: the 5′-end side 12.4-kb region carrying Tn551 (with ermB) and Tn5405-like (with aph[3′]-IIIa and aadE), similar to an Enterococcus faecalis plasmid, and the 3′-end side 6,587-bp region (MEScat) that carries cat and is flanked by inverted repeats of IS1216V. MEScat possessed att duplication at both ends and additional two copies of IS1216V inside. MESPM1 represents the first enterococcal IS1216V-mediated composite transposon emerged in MRSA. IS1216V-mediated deletion likely occurred in IS1216V-rich MESPM1, resulting in distinct resistance patterns in PM1-derivative strains. Another structure was a 6,025-bp tet-carrying element (MEStet) on a 25,961-bp novel mosaic penicillinase plasmid (pPM1); MEStet was flanked by direct repeats of IS431, but with no target sequence repeats. Moreover, the PM1 genome was deficient in a copy of the restriction and modification genes (hsdM and hsdS), which might have contributed to the acquisition of enterococcal multidrug resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号