首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1401篇
  免费   138篇
  2021年   10篇
  2019年   9篇
  2018年   11篇
  2017年   13篇
  2016年   19篇
  2015年   44篇
  2014年   39篇
  2013年   84篇
  2012年   75篇
  2011年   81篇
  2010年   48篇
  2009年   52篇
  2008年   74篇
  2007年   99篇
  2006年   90篇
  2005年   97篇
  2004年   65篇
  2003年   76篇
  2002年   89篇
  2001年   15篇
  2000年   9篇
  1999年   21篇
  1998年   32篇
  1997年   27篇
  1996年   16篇
  1995年   12篇
  1994年   16篇
  1993年   27篇
  1992年   24篇
  1991年   16篇
  1990年   13篇
  1989年   17篇
  1988年   11篇
  1987年   16篇
  1986年   16篇
  1985年   17篇
  1984年   14篇
  1983年   12篇
  1982年   12篇
  1981年   14篇
  1980年   14篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1976年   13篇
  1975年   12篇
  1974年   11篇
  1973年   10篇
  1972年   5篇
  1971年   4篇
排序方式: 共有1539条查询结果,搜索用时 15 毫秒
131.
132.
Enzymes catalyzing the conversion of organohalogen compounds are useful in the chemical industry and environmental technology. Here we report the occurrence of a new reduced flavin adenine dinucleotide (FAD) (FADH2)-dependent enzyme that catalyzes the removal of a halogen atom from an unsaturated aliphatic organohalogen compound by the addition of a water molecule to the substrate. A soil bacterium, Pseudomonas sp. strain YL, inducibly produced a protein named Caa67YL when the cells were grown on 2-chloroacrylate (2-CAA). The caa67YL gene encoded a protein of 547 amino acid residues (Mr of 59,301), which shared weak but significant sequence similarity with various flavoenzymes and contained a nucleotide-binding motif. We found that 2-CAA is converted into pyruvate when the reaction was carried out with purified Caa67YL in the presence of FAD and a reducing agent [NAD(P)H or sodium dithionite] under anaerobic conditions. The reducing agent was not stoichiometrically consumed during this reaction, suggesting that FADH2 is conserved by regeneration in the catalytic cycle. When the reaction was carried out in the presence of H218O, [18O]pyruvate was produced. These results indicate that Caa67YL catalyzes the hydration of 2-CAA to form 2-chloro-2-hydroxypropionate, which is chemically unstable and probably spontaneously dechlorinated to form pyruvate. 2-Bromoacrylate, but not other 2-CAA analogs such as acrylate and methacrylate, served as the substrate of Caa67YL. Thus, we named this new enzyme 2-haloacrylate hydratase. The enzyme is very unusual in that it requires the reduced form of FAD for hydration, which involves no net change in the redox state of the coenzyme or substrate.Dehalogenases catalyze the removal of halogen atoms from organohalogen compounds. These enzymes have been attracting a great deal of attention partly because of their possible applications to the chemical industry and environmental technology. Several dehalogenases have been discovered and characterized (6, 11, 14, 17, 22). Some of them act on unsaturated aliphatic organohalogen compounds in which a halogen atom is bound to an sp2-hybridized carbon atom. Examples include various corrinoid/iron-sulfur cluster-containing reductive dehalogenases (1, 7), cis- and trans-3-chloroacrylic acid dehalogenases (4, 19), and LinF (maleylacetate reductase), which acts on 2-chloromaleylacetate (5).In order to gain more insight into the enzymatic dehalogenation of unsaturated aliphatic organohalogen compounds, we searched for microorganisms that dissimilate 2-chloroacrylate (2-CAA) as a sole source of carbon and energy (8). 2-CAA is a bacterial metabolite of 2-chloroallyl alcohol, an intermediate or by-product in the industrial synthesis of herbicides (26). Rats treated orally with the herbicides sulfallate, diallate, and triallate excrete urinary 2-CAA (16). Various halogenated acrylic acids are produced by a red alga (27). We obtained three 2-CAA-utilizing bacteria as a result of screening (8). For one of these bacteria, Burkholderia sp. strain WS, we previously discovered a new NADPH-dependent enzyme, 2-haloacrylate reductase (12, 13). Although this enzyme does not directly remove a halogen atom from the substrate, it is supposed to participate in the metabolism of 2-CAA by catalyzing the conversion of 2-CAA into l-2-chloropropionate, which is subsequently dehalogenated by l-2-haloacid dehalogenase.Another bacterium that we obtained, Pseudomonas sp. strain YL, also dissimilates 2-CAA. However, the metabolic fate of 2-CAA in this bacterium remains unclear. In the present study, we analyzed proteins from 2-CAA- and lactate-grown cells of Pseudomonas sp. YL by two-dimensional polyacrylamide gel electrophoresis (PAGE) and identified a 2-CAA-inducible protein. We found that the protein catalyzes the dehalogenation of 2-CAA by the addition of a water molecule to the substrate, representing a new family of dehalogenases that act on unsaturated aliphatic organohalogen compounds. Remarkably, the enzyme requires reduced flavin adenine dinucleotide (FAD) (FADH2) for its activity, although the reaction does not involve a net change in the redox state of the coenzyme or substrate. Here we describe the occurrence and characteristics of this unusual flavoenzyme.  相似文献   
133.
Adipose tissue-derived mesenchymal stem cells (ASCs) have been reported to be multipotent and to differentiate into various cell types, including osteocytes, adipocytes, chondrocytes, and neural cells. Recently, many authors have reported that ASCs are also able to differentiate into vascular endothelial cells (VECs) in vitro. However, these reports included the use of medium containing fetal bovine serum for endothelial differentiation. In the present study, we have developed a novel method for differentiating mouse ASCs into VECs under serum-free conditions. After the differentiation culture, over 80% of the cells expressed vascular endothelial-specific marker proteins and could take up low-density lipoprotein in vitro. This protocol should be helpful in clarifying the mechanisms of ASC differentiation into the VSC lineage.  相似文献   
134.
Three kinds of enzymes, agarase, β-1,4-mannanase, and β-1,3-xylanase, required for isolation of protoplasts from the red alga Bangia atropurpurea (Roth) C. Ag. were prepared from bacterial culture fluids of Vibrio sp. PO-303, Vibrio sp. MA-138, and Alcaligenes sp. XY-234, respectively, isolated from the sea environment. The optimal pH of all enzymes was around 7.5. Suitable conditions for protoplast isolation from B. atropurpurea were examined. The pretreatment of the fronds with pa-pain solution (20 mM Mes buffer, pH 7.5, containing 2% papain and 0.5 M mannitol) contributed to successful protoplast isolation. When razor-cut fragments of the fronds (about 200 mg in fresh weight) immersed in 20 mM Mes buffer, 7.5, containing 0.5 M mannitol and one unit each of agarase, β-1,4-mannanase, and β-1,3-xylanase were incubated at 22°C for 90 min with gentle agitation, 5.7 × 106 protoplasts were released from them. Many protoplasts regenerated into fronds of regular or irregular shape.  相似文献   
135.
Oviposition response of Ideopsis similis (L.) (Lepidoptera: Danaidae) was examined for 12 phenanthroindolizidine alkaloids present in its host plant, Tylophora tanakae (Maxim.) (Asclepiadaceae). At least five alkaloids, i.e. (+)‐isotylocrebrine (3,4,6,7‐tetramethoxyphenanthroindolizidine; l ), (+)‐3‐demethyliso‐ tylocrebrine ( 3 ), (+)‐isotylocrebrine N‐oxide ( 5 ), (+)‐6‐demethyltylocrebrine ( 8 ) and (–)‐7‐demethyltylophorine ( 10 ), were found to individually stimulate oviposition by females. Of these, compounds 1, 3 and 10 were regarded as key components most responsible for host recognition or preference. However, female egg‐laying was much higher in response to a mixture of the five alkaloids. In two‐choice bioassays, more eggs were deposited on samples comprising the five alkaloids than on samples consisting of a single alkaloid. This suggests strongly that host selection by the butterfly is mediated by the synergistic action of several phenanthroindolizidine alkaloids present in the host plant.  相似文献   
136.
Polymorphisms in human genes have been shown to affect the rate of disease progression to acquired immune deficiency syndrome in human immunodeficiency virus type 1 (HIV-1)-infected individuals. Recently, tripartite motif 5α (TRIM5α) was identified as a factor that confers resistance to HIV-1 infection in Old World monkey cells. Subsequently, Sawyer et al. (Curr Biol 16:95–100, 2006) reported a single nucleotide polymorphism (H43Y) in the human TRIM5α gene and TRIM5α protein with 43Y was found to lose its ability to restrict HIV-1. In the present study, we reevaluated effects of this allele on in vitro anti-HIV-1 activity as well as on HIV-1 disease progression in European and Asian cohorts of HIV-1-infected individuals. Our epidemiological and molecular biological findings clearly indicate H43Y has a very minor effect on anti-HIV-1 activity of TRIM5α, suggesting that this allele is immaterial, at least in HIV-1-infected Europeans and Asians.  相似文献   
137.
The fate of calicivirus in oysters in a 10-day depuration was assessed. The norovirus gene was persistently detected from artificially contaminated oysters during the depuration, whereas feline calicivirus in oysters was promptly eliminated. The prolonged observation of norovirus in oysters implies the existence of a selective retention mechanism for norovirus within oysters.  相似文献   
138.
Inhibitory effects of gold(III) ions (Au(III)) on ribonuclease A (RNase A) and deoxyribonuclease I (DNase I) were investigated at neutral pH. RNase A was completely inhibited by 3 molar equivalents of Au(III) ions. DNase I was inhibited by 10 molar equivalents of Au(III) ions. Stoichiometric analyses suggest that Au(III) ions were coordinated to RNase A molecules. The Au(III)-inhibited RNase A and DNase I were renatured to exhibit 80% and 60% of their intrinsic activity, when the bound Au(III) ions were eliminated from the nucleases by addition of thiourea, which forms a strong complex with gold ions. This suggests that RNase A and DNase I were not oxidized to lose their activity, but reversibly complexed with Au(III) ions to lose their activity. Au(III) ions were probably considered to be bound to histidine and methionine residues in the nucleases, resulting in the inhibition of their activity. CD spectra revealed that the Au(III)-induced inhibition caused a conformational change in RNase A molecules and that the addition of thiourea induced refolding of the Au(III)-inhibited RNase A.  相似文献   
139.
140.
The 5F9A cell, which is a mesenchymal stem cell-like clone established from rat bone marrow substrate adherent cells, can differentiate into adipocytes and osteoblasts in vitro under the appropriate conditions. Multinucleated cells could be also induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) in 5F9A cells. This effect was mediated by protein kinase C. Possible mechanisms of multinucleation by TPA were hypothesized to be either karyokinesis without cytokinesis or cell-cell fusion. By observation using time-lapse phase-contrast microscopy, we determined that the multinucleated cells were generated mainly by karyokinesis without cytokinesis. Cell fusion was studied using time-lapse photography, and confocal laser scanning microscopy using two differentially labeled cells. These techniques demonstrated that multinucleated 5F9A cells could be produced by cell fusion, albeit at a low frequency. We conclude that multinucleated 5F9A cells are formed primarily by karyokinesis without cytokinesis, although some cells are also formed by cell-cell fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号