首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1123篇
  免费   62篇
  国内免费   2篇
  1187篇
  2021年   11篇
  2020年   6篇
  2018年   11篇
  2017年   5篇
  2016年   9篇
  2015年   34篇
  2014年   42篇
  2013年   55篇
  2012年   52篇
  2011年   69篇
  2010年   36篇
  2009年   37篇
  2008年   57篇
  2007年   56篇
  2006年   37篇
  2005年   59篇
  2004年   52篇
  2003年   33篇
  2002年   33篇
  2001年   47篇
  2000年   34篇
  1999年   33篇
  1998年   13篇
  1997年   12篇
  1996年   12篇
  1995年   8篇
  1993年   10篇
  1992年   19篇
  1991年   27篇
  1990年   16篇
  1989年   19篇
  1988年   31篇
  1987年   16篇
  1986年   17篇
  1985年   20篇
  1984年   10篇
  1983年   11篇
  1982年   9篇
  1981年   11篇
  1980年   8篇
  1979年   7篇
  1978年   15篇
  1977年   7篇
  1976年   9篇
  1975年   13篇
  1974年   7篇
  1973年   6篇
  1972年   7篇
  1970年   5篇
  1966年   8篇
排序方式: 共有1187条查询结果,搜索用时 0 毫秒
41.
According to the rate of depletion of CD4 cell counts, we grouped 12 cases of human immunodeficiency virus type 1 (HIV-1) infection as 6 rapid (21.0 to 33.8 cells per microl per month) and 6 slow (0.9 to 7.9 cells per microl per month) progressors and determined the individual viral quasispecies patterns by sequencing the genome region encoding the V1, V2, and V3 loops of envelope protein. Although the quasispecies structures varied widely from one individual to another, a strong correlation was observed between a low rate of disease progression and a high degree of genetic diversity of HIV-1. Furthermore, the V2 loop extension was observed specifically in individuals with slow or no disease progression, whereas basic amino acid substitutions in V3 characteristic of a viral phenotype shift from non-syncytium inducing to syncytium inducing were observed in patients with advanced stages of disease regardless of their rate of disease progression. Studies with recombinant viruses suggested that elongation of V2 potentially restricts the capacity of HIV-1 to replicate in macrophages. Thus, our results suggest the association of distinct sequence features of both V3 and V2 with particular patterns of disease progression. Elongation of the V2 loop may be a good predictor of slow disease progression, while basic substitutions of V3 without elongation of V2 are characteristic of rapid progression.  相似文献   
42.
Hohjoh H  Fukushima T 《Gene》2007,391(1-2):39-44
MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19 to 23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNA. Expression profile analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development and differentiation of cells and in various tissues. We describe here a detection system for miRNA expression profiles, using a new type of DNA chip and fluorescent labeled cellular RNAs, which allows real-time detection of hybridization signals at every step of washing and results in highly reproducible miRNA expression profiles. Using the system, we investigated the expression profiles of miRNA in the mouse central nervous system (CNS), namely the spinal cord, medulla oblongata, pons, cerebellum, midbrain, diencephalons, and cerebral hemispheres. The results indicated that although the CNS subregions expressed similar miRNA genes, the expression levels of the miRNAs varied among the subregions, suggesting that the CNS subregions specialized for different functions possess different expression profiles of miRNAs.  相似文献   
43.
The antitumor activity, cellular metabolism and mechanism of action of the antitumor nucleoside analog, 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd) are described.  相似文献   
44.
Commonly, 16S ribosome RNA (16S rRNA) sequence analysis has been used for identifying enteric bacteria. However, it may not always be applicable for distinguishing closely related bacteria. Therefore, we selected gyrB genes that encode the subunit B protein of DNA gyrase (a topoisomerase type II protein) as target genes. The molecular evolution rate of gyrB genes is higher than that of 16S rRNA, and gyrB genes are distributed universally among bacterial species. Microarray technology includes the methods of arraying cDNA or oligonucleotides on substrates such as glass slides while acquiring a lot of information simultaneously. Thus, it is possible to identify the enteric bacteria easily using microarray technology. We devised a simple method of rapidly identifying bacterial species through the combined use of gyrB genes and microarrays. Closely related bacteria were not identified at the species level using 16S rRNA sequence analysis, whereas they were identified at the species level based on the reaction patterns of oligonucleotides on our microarrays using gyrB genes.  相似文献   
45.
Methionine (Met) is an essential amino acid for all organisms. In plants, Met also functions as a precursor of plant hormones, polyamines, and defense metabolites. The regulatory mechanism of Met biosynthesis is highly complex and, despite its great importance, remains unclear. To investigate how accumulation of Met influences metabolism as a whole in Arabidopsis, three methionine over-accumulation (mto) mutants were examined using a gas chromatography–mass spectrometry-based metabolomics approach. Multivariate statistical analyses of the three mto mutants (mto1, mto2, and mto3) revealed distinct metabolomic phenotypes. Orthogonal projection to latent structures–discriminant analysis highlighted discriminative metabolites contributing to the separation of each mutant and the corresponding control samples. Though Met accumulation in mto1 had no dramatic effect on other metabolic pathways except for the aspartate family, metabolite profiles of mto2 and mto3 indicated that several extensive pathways were affected in addition to over-accumulation of Met. The pronounced changes in metabolic pathways in both mto2 and mto3 were associated with polyamines. The findings suggest that our metabolomics approach not only can reveal the impact of Met over-accumulation on metabolism, but also may provide clues to identify crucial pathways for regulation of metabolism in plants.  相似文献   
46.

Background

Natural microbial communities are extremely complex and dynamic systems in terms of their population structure and functions. However, little is known about the in situ functions of the microbial communities.

Results

This study describes the application of proteomic approaches (metaproteomics) to observe expressed protein profiles of natural microbial communities (metaproteomes). The technique was validated using a constructed community and subsequently used to analyze Chesapeake Bay microbial community (0.2 to 3.0 μm) metaproteomes. Chesapeake Bay metaproteomes contained proteins from pI 4–8 with apparent molecular masses between 10–80 kDa. Replicated middle Bay metaproteomes shared ~92% of all detected spots, but only shared 30% and 70% of common protein spots with upper and lower Bay metaproteomes. MALDI-TOF analysis of highly expressed proteins produced no significant matches to known proteins. Three Chesapeake Bay proteins were tentatively identified by LC-MS/MS sequencing coupled with MS-BLAST searching. The proteins identified were of marine microbial origin and correlated with abundant Chesapeake Bay microbial lineages, Bacteroides and α-proteobacteria.

Conclusion

Our results represent the first metaproteomic study of aquatic microbial assemblages and demonstrate the potential of metaproteomic approaches to link metagenomic data, taxonomic diversity, functional diversity and biological processes in natural environments.  相似文献   
47.
48.
49.
The C3b and C3d receptor sites on one cell line of human diploid fibroblasts (WI-38) were reported in previous papers [3, 4]. In this paper we describe that C3b and C3d receptor sites can also be detected in fibroblast cell lines derived from other human tissues. We consider that C3b and C3d receptors are normally found on the cell surfaces of all human fibroblasts.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号