首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1471篇
  免费   74篇
  国内免费   1篇
  2023年   7篇
  2022年   11篇
  2021年   8篇
  2020年   5篇
  2019年   16篇
  2018年   18篇
  2017年   11篇
  2016年   25篇
  2015年   46篇
  2014年   64篇
  2013年   145篇
  2012年   90篇
  2011年   78篇
  2010年   53篇
  2009年   48篇
  2008年   89篇
  2007年   79篇
  2006年   77篇
  2005年   83篇
  2004年   89篇
  2003年   76篇
  2002年   65篇
  2001年   18篇
  2000年   20篇
  1999年   18篇
  1998年   20篇
  1997年   20篇
  1996年   10篇
  1995年   15篇
  1994年   11篇
  1993年   14篇
  1992年   29篇
  1991年   14篇
  1990年   21篇
  1989年   18篇
  1988年   12篇
  1987年   17篇
  1986年   14篇
  1985年   12篇
  1984年   10篇
  1983年   13篇
  1982年   10篇
  1981年   8篇
  1980年   6篇
  1979年   4篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
  1973年   2篇
排序方式: 共有1546条查询结果,搜索用时 359 毫秒
81.
82.
During chick liver development, the liver bud arises from the foregut, invaginates into the septum transversum, and elongates along and envelops the ductus venosus. However, the mechanism of liver bud migration is only poorly understood. Here, we demonstrate that a GDNF family ligand involved in neuronal outgrowth and migration, neurturin (NRTN), and its receptor, GFRalpha2, are essential for liver bud migration. In the chick embryo, we found that GFRalpha2 was expressed in the liver bud and that NRTN was expressed in the endothelial cells of the ductus venosus. Inhibition of GFRalpha2 signaling suppressed liver bud elongation along the ductus venous without affecting cell proliferation and apoptosis. Moreover, ectopic expression of NRTN perturbed the directional migration along the ductus venosus, leading to splitting or ectopic branching of the liver. We showed that liver buds selectively migrated toward an NRTN-soaked bead in vitro. These data represent a new model for liver bud migration: NRTN secreted from endothelial cells functions as a chemoattractant to direct the migration of the GFRalpha2-expressing liver bud in early liver development.  相似文献   
83.

Background  

This paper reports on the modification of the Parental Nurturance Scale (PNS), translation of the modified version (PNSM) from English to Japanese, and equivalence assessment between the PNSM and the translated version (PNSM-J). The PNS was modified so as to enable its use in nurturance studies where the prime source of nurturance might vary between respondents.  相似文献   
84.
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.  相似文献   
85.
The molecular evolution processes underlying the acquisition of the placenta in eutherian ancestors are not fully understood. Mouse NCK-interacting kinase (NIK)-related kinase (NRK) is expressed highly in the placenta and plays a role in preventing placental hyperplasia. Here, we show the molecular evolution of NRK, which confers its function for inhibiting placental cell proliferation. Comparative genome analysis identified NRK orthologs across vertebrates, which share the kinase and citron homology (CNH) domains. Evolutionary analysis revealed that NRK underwent extensive amino acid substitutions in the ancestor of placental mammals and has been since conserved. Biochemical analysis of mouse NRK revealed that the CNH domain binds to phospholipids, and a region in NRK binds to and inhibits casein kinase-2 (CK2), which we named the CK2-inhibitory region (CIR). Cell culture experiments suggest the following: 1) Mouse NRK is localized at the plasma membrane via the CNH domain, where the CIR inhibits CK2. 2) This mitigates CK2-dependent phosphorylation and inhibition of PTEN and 3) leads to the inhibition of AKT signaling and cell proliferation. Nrk deficiency increased phosphorylation levels of PTEN and AKT in mouse placenta, supporting our hypothesis. Unlike mouse NRK, chicken NRK did not bind to phospholipids and CK2, decrease phosphorylation of AKT, or inhibit cell proliferation. Both the CNH domain and CIR have evolved under purifying selection in placental mammals. Taken together, our study suggests that placental mammals acquired the phospholipid-binding CNH domain and CIR in NRK for regulating the CK2–PTEN–AKT pathway and placental cell proliferation.  相似文献   
86.
Glycosylphosphatidylinositol (GPI) is a posttranslational glycolipid modification of proteins that anchors proteins in lipid rafts on the cell surface. Although some GPI-anchored proteins (GPI-APs), including the prion protein PrPC, have a glycan side chain composed of N-acetylgalactosamine (GalNAc)−galactose−sialic acid on the core structure of GPI glycolipid, in vivo functions of this GPI-GalNAc side chain are largely unresolved. Here, we investigated the physiological and pathological roles of the GPI-GalNAc side chain in vivo by knocking out its initiation enzyme, PGAP4, in mice. We show that Pgap4 mRNA is highly expressed in the brain, particularly in neurons, and mass spectrometry analysis confirmed the loss of the GalNAc side chain in PrPC GPI in PGAP4-KO mouse brains. Furthermore, PGAP4-KO mice exhibited various phenotypes, including an elevated blood alkaline phosphatase level, impaired bone formation, decreased locomotor activity, and impaired memory, despite normal expression levels and lipid raft association of various GPI-APs. Thus, we conclude that the GPI-GalNAc side chain is required for in vivo functions of GPI-APs in mammals, especially in bone and the brain. Moreover, PGAP4-KO mice were more vulnerable to prion diseases and died earlier after intracerebral inoculation of the pathogenic prion strains than wildtype mice, highlighting the protective roles of the GalNAc side chain against prion diseases.  相似文献   
87.
We determined the expression and subcellular localization of nuclear protein NP95 during the cell cycle in mouse 3T3 cells. The levels of NP95 mRNA and protein were extremely low in quiescent cells; however, stimulation with 10% serum increased their expressions in a time course similar to that of the late growth-regulated gene proliferating cell nuclear antigen (PCNA). Subnuclear location of NP95 dynamically changed during the cell cycle. Double immunostaining for NP95 and chromatin-bound PCNA, a marker of DNA replication sites, revealed that NP95 was almost exclusively colocalized with chromatin-bound PCNA throughout the nucleus in early S phase and partly in mid-S phase. Distinct localization of the two proteins, however, became evident in mid-S phase, and thereafter, many chromatin-bound PCNA foci not carrying NP95 foci could be detected. In G2 phase, nodular NP95 foci were still identified without any chromatin-bound PCNA foci. Chromatin-bound PCNA was observed as a pre-DNA replication complex at the G1/S boundary synchronized by hydroxyurea treatment, while NP95 was detected in nucleolar regions as unique large foci. There was no significant redistribution of NP95 foci shortly after DNA damage by gamma-irradiation. Nodular NP95 foci characteristically seen in G2 phase were also detected in G2-arrested cells following gamma-irradiation. Taken together, our results indicate that NP95 is assigned to a late growth-regulated gene and suggest that NP95 does not take a direct part in DNA replication as part of the DNA synthesizing machinery, like PCNA, but is presumably involved in other DNA replication-linked nuclear events.  相似文献   
88.
In order to understand the mechanism of protein stability and to develop a simple method for predicting mutation-induced stability changes, we analyzed the relationship between stability changes caused by buried mutations and changes in 48 amino acid properties. As expected from the importance of hydrophobicity, properties reflecting hydrophobicity are strongly correlated with the stability of proteins. We found that subgroup classification based on secondary structure increased correlations significantly, and mutations within -strand segments correlated better than did those in -helical segments, which may result from stronger hydrophobicity of the -strands. Multiple regression analyses incorporating combinations of three properties from among all possible combinations of the 48 properties increased the correlation coefficient to 0.88 and by an average of 13% for all data sets. Analyzing the stability of tryptophan synthase mutants with Glu49 replaced by all other residues except Arg revealed that combining buriedness, solvent-accessible surface area for denatured protein, and unfolding Gibbs free energy change increased the correlation to 0.95. Consideration of sequence and structural information (neighboring residues in sequence and in space) did not significantly strengthen the correlations in buried mutations, suggesting that nonspecific interactions dominate in the interior of proteins.  相似文献   
89.
In stockbreeding, there are indications that behavioral traits of livestock have an effect on breeding and production. If the variation in individual behavior is related to that in neurotransmitter-related genes such as in humans, it would be possible to breed pedigrees composed of individuals having behavioral traits that are useful to production and breeding using selection based on genotypes. In this study, we investigated the exon I region of dopamine receptor D4 (DRD4), in which variation is related to psychiatric disorder in humans, in major poultry species namely Japanese quail (Coturnix japonica), chicken (Gallus gallus), ring-necked pheasant (Phasianus colchicus) and helmeted guinea fowl (Numida meleagris). Furthermore, we investigated Japanese cormorant (Phalacrocorax capillatus) and Japanese jungle crow (Corvus macrorhynchos) as an out-group. In these species of birds, the repeat of proline was identified in the region corresponding to the human polymorphic region. The repeat number was 9 in Japanese quail, ring-necked pheasant and Japanese cormorant; 12 in helmeted guinea fowl; and 3 in Japanese jungle crow. However, no polymorphism was found in these species. In contrast, polymorphism was observed in chicken and two alleles with 8 and 9 repeats were identified. Although 9 repeats (allele 9) were predominant in most chicken breeds, Black Minorca had only 8 repeats (allele 8). Intra-breed polymorphism was found in 6 out of 12 breeds, and two alleles (alleles 8 and 9) were detected in these breeds. This polymorphism, which is the first to be reported on a neurotransmitter-related gene in birds, would contribute significant information for elucidation of differences in behavioral traits in chicken breeds.  相似文献   
90.
Among colonies with different foraging distances, central-place-foraging seabirds may change their foraging and reproductive efforts. We compared the body condition, meal frequency, and diving behavior of male and female Adélie penguins at two locations: Dumont d'Urville, where there was little sea ice and they foraged in open waters far from the colony; and Syowa, where there was heavy, fast sea ice and they foraged in ice cracks close to the colony. The parental mass decrease rate during the chick-rearing period was similar between colonies and between sexes. A large individual variation in meal frequency positively affected the brood growth rate, but daily underwater time did not. A weak but significant positive effect of body condition on brood growth rate was found only in males at Syowa. It was suggested that males work with better body condition than females. We propose the hypothesis that the regional difference in the distance to the feeding sites and the sex difference in body energy reserve might constrain the capacity to regulate reproductive effort.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号