首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3940篇
  免费   246篇
  国内免费   1篇
  2022年   20篇
  2021年   44篇
  2019年   53篇
  2018年   37篇
  2017年   50篇
  2016年   71篇
  2015年   106篇
  2014年   136篇
  2013年   210篇
  2012年   205篇
  2011年   215篇
  2010年   123篇
  2009年   144篇
  2008年   211篇
  2007年   186篇
  2006年   168篇
  2005年   171篇
  2004年   167篇
  2003年   167篇
  2002年   150篇
  2001年   146篇
  2000年   140篇
  1999年   108篇
  1998年   56篇
  1997年   43篇
  1996年   49篇
  1995年   44篇
  1994年   35篇
  1993年   36篇
  1992年   83篇
  1991年   86篇
  1990年   78篇
  1989年   56篇
  1988年   56篇
  1987年   52篇
  1986年   41篇
  1985年   29篇
  1984年   47篇
  1983年   27篇
  1982年   27篇
  1981年   25篇
  1980年   19篇
  1979年   30篇
  1978年   21篇
  1977年   22篇
  1976年   25篇
  1974年   25篇
  1973年   21篇
  1972年   22篇
  1971年   18篇
排序方式: 共有4187条查询结果,搜索用时 765 毫秒
991.
Src family tyrosine kinases (SFKs) participate in mitotic signal transduction events, including mitotic entry, cleavage furrow ingression, and cytokinesis abscission. Although SFKs have been shown to associate with the mitotic spindle, the role of SFKs in mitotic spindle formation remains unclear. Here, we show that c-Src promotes proper spindle orientation in early prometaphase. Src localizes close to spindle poles in a manner independent of Src kinase activity. Three-dimensional analyses showed that Src inhibition induced spindle misorientation, exhibiting a tilting spindle in early prometaphase. Spindle misorientation is frequently seen in SYF cells, which harbor triple knock-out mutations of c-Src, c-Yes, and Fyn, and reintroduction of c-Src but not Fyn into SYF cells rescued spindle misorientation. Spindle misorientation was also observed upon Src inhibition under conditions in which Aurora B was inhibited. Inducible expression of c-Src promoted a properly oriented bipolar spindle, which was suppressed by Src inhibition. Aster formation was severely inhibited in SYF cells upon Aurora B inhibition, which was rescued by reintroduction of c-Src into SYF cells. Furthermore, reintroduction of c-Src facilitated microtubule regrowth from cold-induced depolymerization and accelerated M phase progression. These results suggest that c-Src is involved in spindle orientation through centrosome-mediated aster formation.  相似文献   
992.
993.
A cDNA encoding a novel copper amine oxidase (CAO) was cloned and sequenced from the Chinese club moss Huperzia serrata (Huperziaceae), which produces the Lycopodium alkaloid huperzine A. A 2043-bp open reading frame encoded an Mr 76,854 protein with 681 amino acids. The deduced amino acid sequence shared 44-56% identity with the known CAOs of plant origin, and contained the active site consensus sequence of Asn-Tyr-Asp/Glu. The phylogenetic tree analysis revealed that HsCAO from the primitive vascular plant H. serrata is closely related to Physcomitrella patens subsp CAO. The recombinant enzyme, heterologously expressed in Escherichia coli, catalyzed the oxidative deamination of aliphatic and aromatic amines. Among them, the enzyme accepted cadaverine as the best substrate to catalyze the oxidative deamination to Δ(1)-piperideine, which is the precursor of the Lycopodium alkaloids. Furthermore, a homology modeling and site-directed mutagenesis studies predicted the active site architecture, which suggested the crucial active site residues for the observed substrate preference. This is the first report of the cloning and characterization of a CAO enzyme from the primitive Lycopodium plant.  相似文献   
994.
S1P(3)-sparing S1P(1) agonists have attracted attention as a suppressant of autoimmunity with reduced side effects. Our synthetic efforts and extensive SAR studies led to the discovery of 10b named CS-2100 with the EC(50) value of 4.0 nM for human S1P(1) and over 5000-fold selectivity against S1P(3). The in vivo immunosuppressive efficacy was evaluated in rats on host versus graft reaction and the ID(50) value was determined at 0.407mg/kg. The docking studies of CS-2100 with the homology model of S1P(1) and S1P(3) showed that the ethyl group on the thiophene ring of CS-2100 was sterically hindered by Phe263 in S1P(3), not in the case of Leu276 in S1P(1). This observation gives an explanation for the excellent S1P(3)-sparing characteristic of CS-2100.  相似文献   
995.
Oral candidiasis is often accompanied by severe inflammation, resulting in a decline in the quality of life of immunosuppressed individuals and elderly people. To develop a new oral therapeutic option for candidiasis, a nonpathogenic commensal oral probiotic microorganism, Streptococcus salivarius K12, was evaluated for its ability to modulate Candida albicans growth in vitro, and its therapeutic activity in an experimental oral candidiasis model was tested. In vitro inhibition of mycelial growth of C. albicans was determined by plate assay and fluorescence microscopy. Addition of S. salivarius K12 to modified RPMI 1640 culture medium inhibited the adherence of C. albicans to the plastic petri dish in a dose-dependent manner. Preculture of S. salivarius K12 potentiated its inhibitory activity for adherence of C. albicans. Interestingly, S. salivarius K12 was not directly fungicidal but appeared to inhibit Candida adhesion to the substratum by preferentially binding to hyphae rather than yeast. To determine the potentially anti-infective attributes of S. salivarius K12 in oral candidiasis, the probiotic was administered to mice with orally induced candidiasis. Oral treatment with S. salivarius K12 significantly protected the mice from severe candidiasis. These findings suggest that S. salivarius K12 may inhibit the process of invasion of C. albicans into mucous surfaces or its adhesion to denture acrylic resins by mechanisms not associated with the antimicrobial activity of the bacteriocin. S. salivarius K12 may be useful as a probiotic as a protective tool for oral care, especially with regard to candidiasis.  相似文献   
996.
Cytokinesis is a crucial step in the creation of two daughter cells by the formation and ingression of the cleavage furrow. Here, we show that sphingomyelin (SM), one of the major sphingolipids in mammalian cells, is required for the localization of phosphatidylinositol-4,5-bisphosphate (PIP(2)) to the cleavage furrow during cytokinesis. Real-time observation with a labeled SM-specific protein, lysenin, revealed that SM is concentrated in the outer leaflet of the furrow at the time of cytokinesis. Superresolution fluorescence microscopy analysis indicates a transbilayer colocalization between the SM-rich domains in the outer leaflet and PIP(2)-rich domains in the inner leaflet of the plasma membrane. The depletion of SM disperses PIP(2) and inhibits the recruitment of the small GTPase RhoA to the cleavage furrow, leading to abnormal cytokinesis. These results suggest that the formation of SM-rich domains is required for the accumulation of PIP(2) to the cleavage furrow, which is a prerequisite for the proper translocation of RhoA and the progression of cytokinesis.  相似文献   
997.
A better understanding of salt tolerance in plants might lead to the genetic engineering of crops that can grow in saline soils. Here we cloned and characterized plasma membrane and vacuolar Na?/H? antiporters of a monocotyledonous alkaline-tolerant halophyte, Puccinellia tenuiflora. The predicted amino acid sequence of the transporters were very similar to those of orthologs in monocotyledonous crops. Expression analysis showed that (1) NHA was more strongly induced by NaCl in the roots of P. tenuiflora while in rice it was rather induced in the shoots, suggesting that the role of NHA in salt excretion from the roots partly accounts for the difference in the tolerance of the two species, and that (2) NHXs were specifically induced by NaHCO? but not by NaCl in the roots of both species, suggesting that vacuolar-type Na?/H? antiporters play roles in pH regulation under alkaline salt conditions. Overexpression of the antiporters resulted in increased tolerance of shoots to NaCl and roots to NaHCO?. Overexpression lines exhibited a lower Na? content and a higher K? content in shoots under NaCl treatments, leading to a higher Na?/H? ratio.  相似文献   
998.
Aquatic mosses in the genera Bryum and Leptobryum form unique tower-like ??moss pillars?? underwater in some Antarctic lakes, in association with algae and cyanobacteria. These are communities with a two-layer structure comprising an oxidative exterior and reductive interior. Although habitats and photosynthetic properties of moss pillars have been reported, microfloral composition of the two-layer structure has not been described. Here we report fatty acid analysis of one moss pillar and molecular phylogenetic analysis, based on the 16S rRNA gene, of this and one other moss pillar. Cluster analysis of the phospholipid fatty acid composition showed three groups corresponding to the exterior, upper interior, and lower interior of the pillar. This suggested that species composition differed by section, with the exterior dominated by photosynthetic organisms such as mosses, algae, and cyanobacteria, the upper interior primarily containing gram-positive bacteria and anaerobic sulfate-reducing bacteria, and the lower interior dominated by gram-negative bacteria. Molecular phylogenetic analysis revealed that Proteobacteria dominate the moss pillar as a whole; cyanobacteria were found on the exterior and the gram-positive obligate anaerobe Clostridium in the interior, while gram-positive sulfate-reducing bacteria were present in the lowest part of the interior. Nitrogen-fixing bacteria and denitrifying bacteria were found in all sections. Thus, fatty acid analysis and genetic analysis showed similar patterns. These findings suggest that microorganisms of different phylogenetic groups inhabit different sections of a single moss pillar and form a microbial community that performs biogeochemical cycling to establish and maintain a structure in an oxidation?Creduction gradient between exterior and interior.  相似文献   
999.
1000.
In Bordetella bronchiseptica, the functional type III secretion system (TTSS) is required for the induction of necrotic cell death in infected mammalian cells. To identify the factor(s) involved in necrotic cell death, type III-secreted proteins from B. bronchiseptica were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization tandem mass spectrometry. We identified a 69-kDa secreted protein designated BopC. The gene encoding BopC is located outside of the TTSS locus and is also highly conserved in both Bordetella parapertussis and Bordetella pertussis. The results of a lactate dehydrogenase release assay and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay demonstrated that BopC is required for necrotic cell death. It has been reported that tyrosine-phosphorylated proteins (PY) of host cells are dephosphorylated during B. bronchiseptica infection in a TTSS-dependent manner. We found that BopC is also involved in PY dephosphorylation in infected host cells. It appears that the necrotic cell death triggered by BopC occurs prior to the PY reduction in host cells, because Bordetella-induced cell death was not affected even in the presence of a dephosphorylation inhibitor. Furthermore, a translocation assay showed that the signal sequence for both secretion into culture supernatant and translocation into the host cell is located in 48 amino acid residues of the BopC N terminus. This report reveals for the first time that a novel type III effector, BopC, is required for the induction of necrotic cell death during Bordetella infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号