首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4487篇
  免费   390篇
  国内免费   2篇
  2023年   32篇
  2022年   71篇
  2021年   152篇
  2020年   85篇
  2019年   124篇
  2018年   166篇
  2017年   148篇
  2016年   157篇
  2015年   255篇
  2014年   266篇
  2013年   321篇
  2012年   384篇
  2011年   386篇
  2010年   221篇
  2009年   184篇
  2008年   277篇
  2007年   265篇
  2006年   238篇
  2005年   209篇
  2004年   203篇
  2003年   177篇
  2002年   165篇
  2001年   48篇
  2000年   36篇
  1999年   31篇
  1998年   22篇
  1997年   35篇
  1996年   19篇
  1995年   10篇
  1994年   8篇
  1993年   7篇
  1992年   18篇
  1991年   17篇
  1990年   12篇
  1989年   10篇
  1988年   14篇
  1987年   13篇
  1986年   8篇
  1985年   8篇
  1984年   11篇
  1983年   5篇
  1981年   4篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1973年   6篇
  1972年   4篇
  1970年   3篇
  1968年   3篇
排序方式: 共有4879条查询结果,搜索用时 312 毫秒
131.
Biotic seed dispersal is a key process maintaining biodiversity in tropical forests where most trees produce vertebrate‐dispersed seeds. Existing meta‐analyses suggest an overall positive effect of vertebrate gut passage on seed germination, but no significant effects for non‐flying mammals. However, previous meta‐analyses combined rodents (seed predators) and primates (seed dispersers) into the non‐flying mammals category, which may confound specific effects of each group on seed germination. However positive effects of monkeys on germination had previously been found in some studies. Here we disentangle the role of Neotropical primates as contributors to seed dispersal in tropical forests by running a meta‐analysis to determine the overall magnitude of gut passage effects on seed germination percentage and mean time to germination. We also compare effect sizes as a function of different feeding guilds, gut complexities, and seed size. Our results show a strong, positive effect of primates on seed germination percentage and on the number of days to first germination. Strictly frugivorous monkeys, the group most threatened by extinction, showed the highest dispersal quality, increasing germination percentage by 75%. Primates that include insects in their diets had no average effect on germination percentage or time. Gut passage had different outcomes on seeds with different sizes; both large and small seeds showed similar increases in germination percentages after gut passage, but only large seeds germinated faster than control seeds after gut passage. Our results show a relevant role for primates in providing high seed dispersal quality and as drivers of forest regeneration. The combined effects of defaunation and forest fragmentation may result in decreased regeneration of trees, which has the potential to affect negatively both forest structure and ecosystem processes. Finally, we provide general guidelines for standardizing research on seed dispersal by primates. Synthesis Consuming fleshy fruits and dispersing seeds is the main ecological service provided by vertebrates to plants. Vertebrate increases seed germination due to treatment given during digestive system passage. Previous meta‐analyses suggest an overall positive effect of vertebrate gut passage on germination, but no insights are available on its variation among different functional groups of mammals. Our analyses indicated that gut passage by Neotropical primates increased seed germination. Strict frugivores, the ones most threatened by extinction, were the most efficient. Our results show a relevant role for primates in providing high seed dispersal quality and as drivers of forest regeneration, which can be meaningful for conservation in a community scale.  相似文献   
132.
Early social conditions are vital for the establishment of future social interactions. Less, however, is known about how differences in early social conditions contribute to the process of individual recognition and subsequently in the decision of associating and exploring behaviours. In this study, we address this gap in the Trinidadian guppy Poecilia reticulata and test the prediction that fish would show a higher tendency to recognize and associate with individuals of similar phenotype. This prediction was tested by comparing the likelihood of association and latency to explore a novel area in males and females when in the presence of individuals that were familiar (reared together but from different populations), from the same population of origin (from the same population but deprived of interaction with each other), or were unfamiliar (different population and have never interacted). Both early social conditions and population of origin (phenotype matching) affected the tendency to shoal and explore. Females, but not males, exhibited identical preference to associate either with unfamiliar females as with familiar females from a different population. Importantly, female preference did not occur with unfamiliar individuals from a different population. In contrast with our prediction, tendency to shoal did not predict exploration propensity. Males always start exploration before the group whenever unfamiliar males composed the group. Females on the other hand only moved to the novel area after seeing the group doing so, revealing sexual dimorphism in exploratory behaviour. Our results provide evidence for a familiarity and phenotypic matching recognition mechanism at the population level and also highlight the importance of accounting for differences between sexes when investigating the effects of early social conditions.  相似文献   
133.
The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and plasticity. Long-term changes in the BDNF pathway are associated with childhood adversity and adult depression symptoms. Initially, stress-induced decreases in the BDNF pathway were found in some studies, but subsequent reports indicated the relationship between stress and BDNF to be much more complex, and the concept was significantly revised. In the present mini-review, we focus on the structure and regulation of the Bbnf gene as well as on the stress–BDNF interactions under early-life adverse conditions.  相似文献   
134.
The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor‐1 from Arabidopsis thaliana (AtBI‐1), can confer increased tolerance of sugarcane plants to long‐term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long‐term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world.  相似文献   
135.
136.
137.
This study considered the possibility of using plant community phytomass for the assessment of soil pollution with heavy metals (HM) from industrial wastes. The three-year-long field experiment was run under the regional natural meadow vegetation; the polymetallic galvanic slime was used as an industrial waste contaminant. It is shown that soil contamination primarily causes decrease of phytomass in the growing phytocenosis. The vegetation experiments determined nonlinear dependence of cultivated and wild plant biomass on the level of soil contamination; it is described by the equations of logistic and Gaussian regression. In the absence of permanent contaminants, the soil is self-cleaned over time. It reproduces phytomass mainly due to the productivity increase of the most pollution-tolerant species in the remaining phytocenosis. This phenomenon is defined as environmental hysteresis. Soil pollution by industrial waste leads to the loss of plant biodiversity. The research shows that the study of the HM impact on ecosystems is expedient given the consideration of the “soil–phytocenosis–pollutant” complex in the “dose–response” aspect. The reaction of phytocenosis on HM showing decline in phytomass leads to serious limitations in the choice of accumulating plants, because the adsorbed HM are rejected through phytomass.  相似文献   
138.
139.
140.
We evaluated oxygen consumption and ammonia excretion by juveniles of the pink shrimp Farfantepenaeus paulensis at three different temperatures (15, 20 and 25 °C). The shrimp were collected in the coastal region of Cananéia, São Paulo State, Brazil. The selected temperatures are the limits recorded in aquaculture tanks in the coastal region of Cananéia. We measured oxygen consumption and ammonia excretion as proxies for metabolic activity. Oxygen consumption and ammonia excretion increased with increasing temperature, but no change was observed at 15 and 20 °C. It is possible that within this temperature range, there is thermal independence in juvenile F. paulensis do not need to allocate additional energy to compensate for temperature changes because they are physiologically adapted for this range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号