首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4707篇
  免费   399篇
  国内免费   2篇
  2024年   5篇
  2023年   45篇
  2022年   82篇
  2021年   146篇
  2020年   72篇
  2019年   111篇
  2018年   161篇
  2017年   145篇
  2016年   157篇
  2015年   236篇
  2014年   274篇
  2013年   328篇
  2012年   406篇
  2011年   392篇
  2010年   268篇
  2009年   219篇
  2008年   302篇
  2007年   294篇
  2006年   257篇
  2005年   256篇
  2004年   243篇
  2003年   200篇
  2002年   186篇
  2001年   27篇
  2000年   20篇
  1999年   24篇
  1998年   37篇
  1997年   34篇
  1996年   25篇
  1995年   17篇
  1994年   12篇
  1993年   11篇
  1992年   5篇
  1991年   5篇
  1990年   9篇
  1989年   6篇
  1988年   4篇
  1986年   8篇
  1985年   8篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1980年   6篇
  1979年   6篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1974年   4篇
  1968年   3篇
  1967年   3篇
排序方式: 共有5108条查询结果,搜索用时 15 毫秒
311.
Several MHC class II alleles linked with autoimmune diseases form unusually low stability complexes with CLIP, leading us to hypothesize that this is an important feature contributing to autoimmune pathogenesis. To investigate cellular consequences of altering class II/CLIP affinity, we evaluated invariant chain (Ii) mutants with varying CLIP affinity for a mouse class II allele, I-E(d), which has low affinity for wild-type CLIP and is associated with a mouse model of spontaneous, autoimmune joint inflammation. Increasing CLIP affinity for I-E(d) resulted in increased cell surface and total cellular abundance and half-life of I-E(d). This reveals a post-endoplasmic reticulum chaperoning capacity of Ii via its CLIP peptides. Quantitative effects on I-E(d) were less pronounced in DM-expressing cells, suggesting complementary chaperoning effects mediated by Ii and DM, and implying that the impact of allelic variation in CLIP affinity on immune responses will be highest in cells with limited DM activity. Differences in the ability of cell lines expressing wild-type or high-CLIP-affinity mutant Ii to present Ag to T cells suggest a model in which increased CLIP affinity for class II serves to restrict peptide loading to DM-containing compartments, ensuring proper editing of antigenic peptides.  相似文献   
312.
Epsin and AP180 are essential components of the endocytotic machinery, which controls internalization of protein receptors and other macromolecules at the cell surface. Epsin and AP180 are recruited to the plasma membrane by their structurally and functionally related N-terminal ENTH and ANTH domains that specifically recognize PtdIns(4,5)P2. Here, we show that membrane anchoring of the ENTH and ANTH domains is regulated by the acidic environment. Lowering the pH enhances PtdIns(4,5)P2 affinity of the ENTH and ANTH domains reinforcing their association with lipid vesicles and monolayers. The pH dependency is due to the conserved histidine residues of the ENTH and ANTH domains, protonation of which is necessary for the strong PtdIns(4,5)P2 recognition, as revealed by liposome binding, surface plasmon resonance, NMR, monolayer surface tension and mutagenesis experiments. The pH sensitivity of the ENTH and ANTH domains is reminiscent to the pH dependency of the FYVE domain suggesting a common regulatory mechanism of membrane anchoring by a subset of the PI-binding domains.  相似文献   
313.
Dysregulation of signaling pathways is believed to contribute to Parkinson's disease pathology and l-DOPA-induced motor complications. Long-lived dopamine (DA) agonists are less likely to cause motor complications by virtue of continuous stimulation of DA receptors. In this study, we compared the effects of the unilateral 6-hydroxydopamine lesion and subsequent treatment with l-DOPA and DA agonist pergolide on signaling pathways in rats. Pergolide caused less pronounced behavioral sensitization than l-DOPA (25 mg/kg, i.p., 10 days), particularly at lower dose (0.5 and 0.25 mg/kg, i.p.). Pergolide, but not l-DOPA, reversed lesion-induced up-regulation of preproenkephalin and did not up-regulate preprodynorphine or DA D3 receptor in the lesioned hemisphere. Pergolide was as effective as l-DOPA in reversing the lesion-induced elevation of ERK2 phosphorylation in response to acute apomorphine administration (0.05 mg/kg, s.c.). Chronic l-DOPA significantly elevated the level of Akt phosphorylation at both Thr(308) and Ser(473) and concentration of phosphorylated GSK3alpha, whereas pergolide suppressed the lesion- and/or challenge-induced supersensitive Akt responses. The data indicate that l-DOPA, unlike pergolide, exacerbates imbalances in the Akt pathway caused by the loss of DA. The results support the hypothesis that the Akt pathway is involved in long-term actions of l-DOPA and may be linked to l-DOPA-induced dyskinesia.  相似文献   
314.
Much experimental evidence shows that the cytoskeleton is a downstream target and effector during cell death in numerous neurodegenerative diseases, including Parkinson's, Huntington's, and Alzheimer's diseases. However, recent evidence indicates that cytoskeletal dysfunction can also trigger neuronal death, by mechanisms as yet poorly understood. This is the first of two papers in which we study a mathematical model of cytoskeleton-induced neuron death. In our model, assembly control of the neuronal cytoskeleton interacts with both cellular stress levels and cytosolic free radical concentrations to trigger neurodegeneration. This trigger mechanism is further modulated by the presence of cell interactions in the form of a diffusible toxic factor released by dying neurons. We find that, consistent with empirical observations, our model produces one-hit exponential and sigmoid patterns of cell dropout. In all cases, cell dropout is exponential-tailed and described accurately by a gamma distribution. The transition between exponential and sigmoidal is gradual, and determined by a synergetic interaction between the magnitude of fluctuations in cytoskeleton assembly control and by the degree of cell coupling. We conclude that a single mechanism involving neuron interactions and fluctuations in cytoskeleton assembly control is compatible with the experimentally observed range of neuronal attrition kinetics.  相似文献   
315.
The molecular identity of mammalian phosphopentomutase has not yet been established unequivocally. That of glucose-1,6-bisphosphate synthase, the enzyme that synthesizes a cofactor for phosphomutases and putative regulator of glycolysis, is completely unknown. In the present work, we have purified phosphopentomutase from human erythrocytes and found it to copurify with a 68-kDa polypeptide that was identified by mass spectrometry as phosphoglucomutase 2 (PGM2), a protein of the alpha-d-phosphohexomutase family and sharing about 20% identity with mammalian phosphoglucomutase 1. Data base searches indicated that vertebrate genomes contained, in addition to PGM2, a homologue (PGM2L1, for PGM2-like 1) sharing about 60% sequence identity with this protein. Both PGM2 and PGM2L1 were overexpressed in Escherichia coli, purified, and their properties were studied. Using catalytic efficiency as a criterion, PGM2 acted more than 10-fold better as a phosphopentomutase (both on deoxyribose 1-phosphate and on ribose 1-phosphate) than as a phosphoglucomutase. PGM2L1 showed only low (<5%) phosphopentomutase and phosphoglucomutase activities compared with PGM2, but was about 5-20-fold better than the latter enzyme in catalyzing the 1,3-bisphosphoglycerate-dependent synthesis of glucose 1,6-bisphosphate and other aldose-bisphosphates. Furthermore, quantitative real-time PCR analysis indicated that PGM2L1 was mainly expressed in brain where glucose-1,6-bisphosphate synthase activity was previously shown to be particularly high. We conclude that mammalian phosphopentomutase and glucose-1,6-bisphosphate synthase correspond to two closely related proteins, PGM2 and PGM2L1, encoded by two genes that separated early in vertebrate evolution.  相似文献   
316.
317.
318.
319.
320.
The hypothesis presented here for proton transfer away from the water oxidation complex of Photosystem II (PSII) is supported by biochemical experiments on the isolated PsbO protein in solution, theoretical analyses of better understood proton transfer systems like bacteriorhodopsin and cytochrome oxidase, and the recently published 3D structure of PS II (Pdb entry 1S5L). We propose that a cluster of conserved glutamic and aspartic acid residues in the PsbO protein acts as a buffering network providing efficient acceptors of protons derived from substrate water molecules. The charge delocalization of the cluster ensures readiness to promptly accept the protons liberated from substrate water. Therefore protons generated at the catalytic centre of PSII need not be released into the thylakoid lumen as generally thought. The cluster is the beginning of a localized, fast proton transfer conduit on the lumenal side of the thylakoid membrane. Proton-dependent conformational changes of PsbO may play a role in the regulation of both supply of substrate water to the water oxidizing complex and the resultant proton transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号