首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2891篇
  免费   258篇
  国内免费   2篇
  2024年   2篇
  2023年   19篇
  2022年   56篇
  2021年   96篇
  2020年   43篇
  2019年   71篇
  2018年   92篇
  2017年   83篇
  2016年   82篇
  2015年   150篇
  2014年   173篇
  2013年   198篇
  2012年   266篇
  2011年   259篇
  2010年   156篇
  2009年   120篇
  2008年   194篇
  2007年   200篇
  2006年   167篇
  2005年   160篇
  2004年   158篇
  2003年   135篇
  2002年   130篇
  2001年   13篇
  2000年   14篇
  1999年   14篇
  1998年   17篇
  1997年   19篇
  1996年   13篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1985年   3篇
  1984年   4篇
  1982年   1篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
  1968年   2篇
  1957年   1篇
  1954年   1篇
  1946年   1篇
排序方式: 共有3151条查询结果,搜索用时 15 毫秒
951.
Molecular Biology Reports - The Canadian prairie ecosystem presents a rich source of natural products from plants that are subjected to herbivory by grazing mammals. This type of ecological...  相似文献   
952.
Molecular and Cellular Biochemistry - The cellular prion protein (PrPC) is anchored in the plasma membrane of cells, and it is highly present in cells of brain tissue, exerting numerous cellular...  相似文献   
953.
954.
Regulation of VDAC by α-synuclein (αSyn) is a rich and instructive example of protein-protein interactions catalyzed by a lipid membrane surface. αSyn, a peripheral membrane protein involved in Parkinson's disease pathology, is known to bind to membranes in a transient manner. αSyn's negatively charged C-terminal domain is then available to be electromechanically trapped by the VDAC β-barrel, a process that is observed in vitro as the reversible reduction of ion flow through a single voltage-biased VDAC nanopore. Binding of αSyn to the lipid bilayer is a prerequisite of the channel-protein interaction; surprisingly, however, we find that the strength of αSyn binding to the membrane does not correlate in any simple way with its efficiency of blocking VDAC, suggesting that the lipid-dependent conformations of the membrane-bound αSyn control the interaction. Quantitative models of the free energy landscape governing the capture and release processes allow us to discriminate between several αSyn (sub-) conformations on the membrane surface. These results, combined with known structural features of αSyn on anionic lipid membranes, point to a model in which the lipid composition determines the fraction of αSyn molecules for which the charged C terminal domain is constrained to be close, but not tightly bound, to the membrane surface and thus readily captured by the VDAC nanopore. We speculate that changes in the mitochondrial membrane lipid composition may be key regulators of the αSyn-VDAC interaction and consequently of VDAC-facilitated transport of ions and metabolites in and out of mitochondria and, i.e. mitochondrial metabolism.  相似文献   
955.
Recent advances in light microscopy allow individual biological macromolecules to be visualized in the plasma membrane and cytosol of live cells with nanometer precision and ∼10-ms time resolution. This allows new discoveries to be made because the location and kinetics of molecular interactions can be directly observed in situ without the inherent averaging of bulk measurements. To date, the majority of single-molecule imaging studies have been performed in either unicellular organisms or cultured, and often chemically fixed, mammalian cell lines. However, primary cell cultures and cell lines derived from multi-cellular organisms might exhibit different properties from cells in their native tissue environment, in particular regarding the structure and organization of the plasma membrane. Here, we describe a simple approach to image, localize, and track single fluorescently tagged membrane proteins in freshly prepared live tissue slices and demonstrate how this method can give information about the movement and localization of a G protein–coupled receptor in cardiac tissue slices. In principle, this experimental approach can be used to image the dynamics of single molecules at the plasma membrane of many different soft tissue samples and may be combined with other experimental techniques.  相似文献   
956.
Chromosomal instability (CIN) is a hallmark of many cancers. Restricting the localization of centromeric histone H3 variant CENP-A to centromeres prevents CIN. CENP-A overexpression (OE) and mislocalization have been observed in cancers and correlate with poor prognosis; however, the molecular consequences of CENP-A OE on CIN and aneuploidy have not been defined. Here, we show that CENP-A OE leads to its mislocalization and CIN with lagging chromosomes and micronuclei in pseudodiploid DLD1 cells and xenograft mouse model. CIN is due to reduced localization of proteins to the kinetochore, resulting in defects in kinetochore integrity and unstable kinetochore–microtubule attachments. CENP-A OE contributes to reduced expression of cell adhesion genes and higher invasion of DLD1 cells. We show that CENP-A OE contributes to aneuploidy with karyotypic heterogeneity in human cells and xenograft mouse model. In summary, our results provide a molecular link between CENP-A OE and aneuploidy, and suggest that karyotypic heterogeneity may contribute to the aggressive phenotype of CENP-A–overexpressing cancers.  相似文献   
957.

The review describes the structures of plant carbonic anhydrases (CAs), enzymes catalyzing the interconversion of inorganic carbon forms and belonging to different families, as well as the interaction of inhibitors and activators of CA activity with the active sites of CAs in representatives of these families. We outline the data that shed light on the location of CAs in green cells of C3 plants, algae and angiosperms, with the emphasis on the recently obtained data. The proven and proposed functions of CAs in these organisms are listed. The possibility of the involvement of several chloroplast CAs in acceleration of the conversion of bicarbonate to CO2 and in supply of CO2 for fixation by Rubisco is particularly considered. Special attention is paid to CAs in various parts of thylakoids and to discussion about current knowledge of their possible physiological roles. The review states that, despite the significant progress in application of the mutants with suppressed CAs synthesis, the approach based on the use of the inhibitors of CA activity in some cases remains quite effective. Combination of these two approaches, namely determining the effect of CA activity inhibitors in plants with certain knocked-out CA genes, turns out to be very useful for understanding the functions of other CAs.

  相似文献   
958.
Journal of Physiology and Biochemistry - Small G-proteins of Rho family modulate the activity of several classes of ion channels, including K+ channels Kv1.2, Kir2.1, and ERG; Ca2+ channels; and...  相似文献   
959.
Trypanosoma brucei rhodesiense is one of the causative agents of Human African Trypanosomiasis (HAT), known as sleeping sickness. The parasite invades the central nervous system and causes severe encephalitis that is fatal if left untreated. We have previously identified ecotin-like inhibitors of serine peptidases, named ISPs, in trypanosomatid parasitic protozoa. Here, we investigated the role of ISP2 in bloodstream form T. b. rhodesiense. We generated gene-deficient mutants lacking ISP2 (Δisp2), which displayed a growth profile in vitro similar to that of wild-type (WT) parasites. C57BL/6 mice infected with Δisp2 displayed lower blood parasitemia, a delayed hind leg pathological phenotype and survived longer. The immune response was examined at two time-points that corresponded with two peaks of parasitemia. At 4 days, the spleens of Δisp2-infected mice had a greater percentage of NOS2+ myeloid cells, IFN-γ+-NK cells and increased TNF-α compared to those infected with WT and parasites re-expressing ISP2 (Δisp2:ISP2). By 13 days the increased NOS2+ population was sustained in Δisp2-infected mice, along with increased percentages of monocyte-derived dendritic cells, as well as CD19+ B lymphocytes, and CD8+ and CD4+ T lymphocytes. Taken together, these findings indicate that ISP2 contributes to T. b. rhodesiense virulence in mice and attenuates the inflammatory response during early infection.  相似文献   
960.
Yeast prions are self-perpetuating, QN-rich amyloids that control heritable traits and serve as a model for mammalian amyloidoses. De novo prion formation by overproduced prion protein is facilitated by other aggregated QN-rich protein(s) and is influenced by alterations of protein homeostasis. Here we explore the mechanism by which the Las17-binding protein Lsb2 (Pin3) promotes conversion of the translation termination factor Sup35 into its prion form, [PSI(+)]. We show that Lsb2 localizes with some Sup35 aggregates and that Lsb2 is a short-lived protein whose levels are controlled via the ubiquitin-proteasome system and are dramatically increased by stress. Loss of Lsb2 decreases stability of [PSI(+)] after brief heat shock. Mutations interfering with Lsb2 ubiquitination increase prion induction, while a mutation eliminating association of Lsb2 with the actin cytoskeleton blocks its aggregation and prion-inducing ability. These findings directly implicate the UPS and actin cytoskeleton in regulating prions via a stress-inducible QN-rich protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号