首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   7篇
  136篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   10篇
  2006年   8篇
  2005年   9篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1986年   6篇
  1985年   6篇
  1984年   6篇
  1983年   7篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1974年   1篇
  1969年   5篇
  1963年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
61.
The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.  相似文献   
62.

Background

TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302.

Methodology/Results

The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500–1500 mm3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼550 mm3), significantly delayed tumor growth.

Conclusions/Significance

Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.  相似文献   
63.
Drug induced toxicity and drug resistance are the major impediments to successful application of cancer chemotherapy. Therefore, selective targeting of the key biochemical events of the malignant cells may have a great therapeutic potential in specifically kill the cancer cells. We have evaluated in vitro the cytotoxic efficacy of a previously reported copper complex viz. copper N-(2-hydroxy acetophenone) glycinate (CuNG) on different drug sensitive and resistant cancer cell lines by MTT, annexin V positivity and caspase 3 activation assays. We have also investigated the underlying signalling events in CuNG mediated apoptosis of cancer cells by Western blotting technique. We have found that CuNG preferentially induces apoptosis to malignant cells irrespective of drug sensitivity and spares the normal cells. Our studies disclose that CuNG causes cellular redox imbalance in cancer cells through depletion of intracellular GSH level. CuNG mediated depletion of intracellular GSH level induces mitochondrial superoxide generation, which detaches cyto C from mitochondrial membrane through lipid peroxidation. The detached cyto C then release into the extra mitochondrial milieu in Bax mediated pathway where CuNG facilitates the binding of Bax through dissociation of hexokinase II from mitochondrial membrane. The present study opens the possibility of developing effective chemotherapeutic drugs by synthesizing numerous chemical compounds capable of targeting cellular redox environment and thus specifically kills cancer cells of broad spectrum.  相似文献   
64.

Background

Multi drug resistance (MDR) or cross-resistance to multiple classes of chemotherapeutic agents is a major obstacle to successful application of chemotherapy and a basic problem in cancer biology. The multidrug resistance gene, MDR1, and its gene product P-glycoprotein (P-gp) are an important determinant of MDR. Therefore, there is an urgent need for development of novel compounds that are not substrates of P-glycoprotein and are effective against drug-resistant cancer.

Methodology/Principal Findings

In this present study, we have synthesized a novel, redox active Fe (II) complex (chelate), iron N- (2-hydroxy acetophenone) glycinate (FeNG). The structure of the complex has been determined by spectroscopic means. To evaluate the cytotoxic effect of FeNG we used doxorubicin resistant and/or sensitive T lymphoblastic leukemia cells and show that FeNG kills both the cell types irrespective of their MDR phenotype. Moreover, FeNG induces apoptosis in doxorubicin resistance T lymphoblastic leukemia cell through mitochondrial pathway via generation reactive oxygen species (ROS). This is substantiated by the fact that the antioxidant N-acetyle-cysteine (NAC) could completely block ROS generation and, subsequently, abrogated FeNG induced apoptosis. Therefore, FeNG induces the doxorubicin resistant T lymphoblastic leukemia cells to undergo apoptosis and thus overcome MDR.

Conclusion/Significance

Our study provides evidence that FeNG, a redox active metal chelate may be a promising new therapeutic agent against drug resistance cancers.  相似文献   
65.
Summary Highest uptake of32P by young shoots of three plant species was observed and lowest by old ones. The uptake of32P was highest inHydrilla shoots, followed byVallisneria andPotamogeton.Kinetin (0.23 mM) pretreatment (24 h) increased the uptake of32P, while 0.69 mM ethrel or 0.075 mM ABA decreased it in all species.32P was transported to the largest extent to the young shoots of the submerged plants and to the smallest extent to the old ones by kinetin pretreatment. Kinetin enhanced the uptake of32P most inHydrilla shoots, followed byVallisneria andPotamogeton. Ethrel diminished32P uptake most inPotamogeton shoots and to the smallest extent inHydrilla, while ABA lowered it most inHydrilla shoots and to the smallest extent inPotamogeton. Kinetin, ethrel and ABA can modify the uptake of32P of these aquatic plants.  相似文献   
66.
The current research work investigates the potential of solid lipid nanoparticles (SLNs) in improving the oral bioavailability of paclitaxel. Paclitaxel-loaded SLNs (PTX-SLNs) were prepared by modified solvent injection method using stearylamine as lipid, soya lecithin and poloxamer 188 as emulsifiers. SLNs were characterized in terms of surface morphology, size and size distribution, surface chemistry and encapsulation efficiency. Pharmacokinetics and bioavailability studies were conducted in male Swiss albino mice after oral administration of PTX-SLNs. SLNs exhibited spherical shape with smooth surface as analyzed by transmission electron microscopy (TEM). The mean particle size of SLNs was 96 ± 4.4 nm with a low polydispersity index of 0.162 ± 0.04 and zeta potential of 39.1 ± 0.8 mV. The drug entrapment efficiency was found to be 75.42 ± 1.5% with a loading capacity of 31.5 ± 2.1% (w/w). Paclitaxel showed a slow and sustained in vitro release profile and followed Higuchi kinetic equations. After oral administration of the PTX-SLNs, drug exposure in plasma and tissues was ten- and twofold higher, respectively, when compared with free paclitaxel solution. PTX-SLNs produced a high mean C max (10,274 ng/ml) compared with that of free paclitaxel solution (3,087 ng/ml). The absorbed drug was found to be distributed in liver, lungs, kidneys, spleen, and brain. The results suggested that PTX-SLNs dispersed in an aqueous environment are promising novel formulations that enhanced the oral bioavailability of hydrophobic drugs, like paclitaxel and were quite safe for oral delivery of paclitaxel as observed by in vivo toxicity studies.  相似文献   
67.
T cells recognize small fragments of microorganisms (antigens) on the surface of other cells using T cell antigen receptors. The mechanism by which these receptors signal into T cells is controversial, but two recent studies provide important new clues.  相似文献   
68.
It has been previously demonstrated that macrophage colony stimulating factor (CSF-1) is produced by uterine epithelial cells in response to estrogen and progesterone. Studies in normal and op/op mice demonstrated that accumulation of a portion of the uterine macrophage population could be attributed to the chemotactic properties of CSF-1. Op/op mice exhibit greatly reduced rates of fertility, but successful pregnancy is not completely blocked. Also, uteri from op/op mice are not completely macrophage deficient. There are two possible explanations for this. One is that not all tissue macrophages are recruited from the bone marrow pool; some may be derived from primitive mesenchyme. Alternatively, tissue macrophages may be recruited from the bone marrow pool through expression of other type I chemokines such as JE, RANTES, MIP-1α, MIP-1β, IP-10, and KC. Both RANTES and JE are expressed at higher levels than CSF-1 during early pregnancy. The variable expression and relative role of these various chemokines in pregnancy was addressed by measuring mRNA expression during the first 8 days of pregnancy and in a pseudopregnant model. The expression of these various genes relative to macrophage numbers and macrophage distribution will be discussed. The relative role of these various factors in preparing the uterus for blastocyst implantation will be discussed. Mol Reprod Dev 46:62–70, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
69.
BackgroundAt the early stages of carcinogenesis, the induction of tumor specific T cell mediated immunity seems to block the tumor growth and give protective anti-tumor immune response. However, tumor associated macrophages (TAMs) might play an immunosuppressive role and subvert this anti tumor immunity leading to tumor progression and metastasis.Conclusion/SignificanceOur results show the potential usefulness of CuNG in immunotherapy of drug-resistant cancers through reprogramming of TAMs that in turn reprogram the T cells and reeducate the T helper function to elicit proper anti-tumorogenic Th1 response leading to effective reduction in tumor growth.  相似文献   
70.
It has been hypothesized that hormonally regulated histamine production plays a role in preparation of the uterus for implantation. Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine production. The current study was designed to determine intrauterine expression of HDC mRNA expression during pregnancy in the mouse. High levels of HDC mRNA expression were observed in the preimplantation mouse uterus with peak expression occurring on day 4. High levels of HDC mRNA expression were also detected in the post-implantation uterus. In an effort to determine whether HDC mRNA is regulated by pro-inflammatory cytokines, the HDC mRNA pattern was compared to intrauterine expression of mRNA's for interleukin-1alpha (IL-1alpha), IL-1beta, macrophage chemotactic protein-1 (MCP-1) and RANTES (regulated on activation, normal T expressed and secreted) during the peri-implantation period. IL-1beta, MCP-1 and RANTES mRNA levels were increased in the uterus on days 1-2 and on days 4-5. Increased expression of IL-1alpha mRNA was observed on days 1-2 and days 5-7. There was no clear relationship between HDC mRNA expression and cytokine/chemokine mRNA expression. Progesterone-stimulated intrauterine expression of HDC mRNA. Intrauterine cytokine/chemokine mRNA was also hormonally regulated. This data allowed the possibility that one or more of these pro-inflammatory cytokines could be involved in regulating intrauterine HDC mRNA production. Recombinant IL-1alpha, IL-1beta, MCP-1 and RANTES all failed to induce HDC mRNA expression in the preimplantation uterus in a mouse pseudopregnancy model. At the same time, IL-1beta induced the expression of mRNA for each of the four cytokines/chemokines. Despite the fact that these were also produced in the uterus during pregnancy and were hormonally regulated, none of these cytokines induced intrauterine HDC mRNA expression. The data suggest that progesterone is involved in the regulation of HDC mRNA expression in the preimplantation uterus, but IL-1alpha/beta, MCP-1 and RANTES, which have been reported to regulate histamine synthesis during inflammatory processes, do not appear to play a role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号