首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   781篇
  免费   106篇
  2021年   8篇
  2018年   11篇
  2017年   10篇
  2016年   10篇
  2015年   22篇
  2014年   23篇
  2013年   35篇
  2012年   43篇
  2011年   47篇
  2010年   28篇
  2009年   25篇
  2008年   20篇
  2007年   27篇
  2006年   22篇
  2005年   17篇
  2004年   26篇
  2003年   30篇
  2002年   20篇
  2001年   19篇
  2000年   14篇
  1999年   25篇
  1998年   9篇
  1997年   8篇
  1996年   19篇
  1995年   12篇
  1994年   11篇
  1993年   9篇
  1992年   18篇
  1991年   20篇
  1990年   24篇
  1989年   24篇
  1988年   12篇
  1987年   15篇
  1986年   15篇
  1985年   8篇
  1984年   12篇
  1983年   13篇
  1982年   11篇
  1981年   15篇
  1980年   13篇
  1979年   18篇
  1978年   19篇
  1977年   9篇
  1975年   15篇
  1974年   13篇
  1973年   7篇
  1971年   5篇
  1969年   5篇
  1968年   5篇
  1966年   5篇
排序方式: 共有887条查询结果,搜索用时 62 毫秒
31.
The present study describes the independent expression of the type 1 and 2 isoforms of human 5α-reductase in the baculovirus-directed insect cell expression system and the selectivity of their inhibition. The catalytic properties and kinetic parameters of the recombinant isozymes were consistent with published data. The type 1 isoform displayed a neutral (range 6–8) pH optimum and the type 2 isoform an acidic (5–6) pH optimum. The type 2 isoform had higher affinity for testosterone than did the type 1 isoform (Km = 0.5 and 2.9 μM, respectively). Finasteride and turosteride were selective inhibitors of the type 2 isoform (Ki (type 2) = 7.3 and 21.7 nM compared to Ki (type 1) = 108 and 330 nM, respectively). 4-MA and the lipido-sterol extract of Serenoa repens (LSESr) markedly inhibited both isozymes (Ki (type 1) = 8.4 nM and 7.2 μg/ml, respectively; Ki (type 2) = 7.4 nM and 4.9 μg/ml, respectively). The three azasteroids were competitive inhibitors vs substrate, whereas LSESr displayed non-competitive inhibition of the type 1 isozyme and uncompetitive inhibition of the type 2 isozyme. These observations suggest that the lipid component of LSESr might be responsible for its inhibitory effect by modulating the membrane environment of 5α-reductase. Partially purified recombinant 5α-reductase type 1 activity was preserved by the presence of lipids indicating that lipids can exert either stimulatory or inhibitory effects on human 5α-reductase.  相似文献   
32.
The biological transformation of P in soil   总被引:5,自引:0,他引:5  
K. R. Tate 《Plant and Soil》1984,76(1-3):245-256
Summary Organic forms of soil phosphorus (Po) are an important source of available P for plants following mineralisation. The rates and pathways of P through soil organic matter are, however, poorly understood when compared to physco-chemical aspects of the P cycle. The essential role of soil microorganisms as a labile resercoir of P, confirmed experimentally and in modelling studies, has recently led to the development of methods for measuring thier P content. Incorporation in a new P fractionation scheme of these measurements with estimates of Pi and Po fractions that vary in the exten toftheir availability to plants has enabled the dynamics of short-term soil P transformations to be investigated in relation to long-term changes observed in the field.Different types of soil P compounds that minearlise at different rates can now be measured directly in extracts by31P-nuclear magnetic resonance. Orthophosphate diesters, including phospholipids and nucleic acids, are the most readily mineralised group of these compounds. However, mineralisation rates rather than the amounts of types of Po in soil ultimately control P availability to plants. These rates are influenced by a number of soil and site factors, as a sensitive new technique using [32P] RNA has recently shown.These recent developments reflect a more holistic approach to investigation of the soil P cycle than in the past, which should lead to improved fertilizer management practices.Introductory lecture  相似文献   
33.
34.
Localization of gamma-glutamyl transpeptidase in lymphoid cells   总被引:1,自引:0,他引:1  
  相似文献   
35.
gamma-Glutamyl transpeptidase, which is composed of two unequal subunits, exhibits proteinase activity when treated with agents such as urea and sodium dodecyl sulfate. The heavy subunit is preferentially and rapidly degraded. The enzyme also degraded bovine serum albumin in the presence of urea; however, several other proteins and model proteinase substrates were not cleaved. Treatment of the enzyme with 6-diazo-5-oxo-L-norleucine, a gamma-glutamyl analog, results in parallel loss of transpeptidase and proteinase activities indicating that the site at which gamma-glutamylation of the enzyme occurs (presumably a hydroxyl group on the light subunit) is also involved in proteinase activity. The purified light subunit, but not the heavy subunit, exhibits proteinase activity even in the absence of urea. Results suggest that dissociation of the enzyme unmasks the proteinase activity of the light subunit involving the site at which gamma-glutamylation of the enzyme occurs, and that the heavy subunit may impose transpeptidase reaction specificity by contributing the binding domains for gamma-glutamyl substrates.  相似文献   
36.
37.
Summary Previous work by this and other laboratories has shown that glucagon administration stimulates calcium uptake by subsequently isolated hepatic mitochondria. This stimulation of hepatic mitochondrial Ca2+ uptake byin vivo administration of glucagon was further characterized in the present report. Maximal stimulation of mitochondrial Ca2+ accumulation was achieved between 6–10 min after the intravenous injection of glucagon into intact rats. Under control conditions, Ca2+ uptake was inhibited by the presence of Mg2+ in the incubation medium. Glucagon treatment, however, appeared to obliterate the observed inhibition by Mg2+ of mitochondrial Ca2+ uptake. Kinetic experiments revealed the usual sigmoidicity associated with initial velocity curves for mitochondrial calcium uptake. Glucagon treatment did not alter this sigmoidal relationship. Glucagon treatment significantly increased the Vmax for Ca2+ uptake from 292±22 to 377±34 nmoles Ca2+ /min per mg protein (n=8) but did not affect the K0.5, (6.5–8.6 μM). Since the major kinetic change in mitochondrial Ca2+ uptake evoked by glucagon is an increase in Vmax, the enhancement mechanism is likely to be an increase either in the number of active transport sites available to Ca2+ or in the rate of Ca2+ carrier movement across the mitochondrial membranes.  相似文献   
38.
39.
The mechanism by which pentobarbital anesthesia causes increases in plasma renin activity (PRA) was examined in dogs infused with either propranolol or indomethacin, an inhibitor of prostaglandin synthetase. Infusion of propranolol at 1 mg/kg, (I.V.) followed by 0.6–0.7 mg/kg/hr decreased PRA from 6.98±2.49 ng/m1/hr during control periods to 1.58±0.79 ng/m1/hr 30 minutes after the injection of propranolol (P<0.025). Subsequent induction of anesthesia with sodium pentobarbital caused PRA to rise to 3.87±0.93 ng/m1/hr in 30 minutes. (P<0.01). Plasma potassium concentration decreased from 4.6±0.2 mEq/L to reach 4.0±0.1 mEq/L 30 minutes after induction of anesthesia (P<0.005). Infusion of indomethacin at 5 mg/kg, (I.V.) followed by 1.5 ? 3.1 mg/kg/hr into conscious dogs did not decrease PRA. In contrast to the report by Montgomery et al (Fed. Proc. 36: 989, 1977), we found that the increase in PRA after pentobarbital anesthesia could not be blocked by indomethacin. PRA was 5.3±1.2 ng/m1/hr(M ± SEM) during control periods and was 4.7±1.4 ng/m1/hr 30 minutes after the infusion of indomethacin (P<0.1). PRA increased to 10.9±2.3 ng/m1/hr, 9.2±2.2 ng/m1/hr, and 7.7±1.7 ng/m1/hr at 5, 15 and 30 minutes, respectively, after the administration of pentobarbital (P<0.005, P<0.025, P<0.05). PRA declined to 4.2±1.3 ng/m1/hr 60 minutes after pentobarbital anesthesia (P<0.1). It is concluded that the mechanism by which pentobarbital causes increases in PRA is independent of prostaglandins.  相似文献   
40.
Hippurate and maleate have been shown to bind to the aminoacylglycine (acceptor) binding site of γ-glutamyl transpeptidase, thereby stimulating the hydrolysis of γ-glutamyl compounds at the expense of transpeptidation (Thompson, G. A., and Meister, A. (1979) J. Biol. Chem.254, 2956–2960; Thompson, G. A., and Meister, A. (1980) J. Biol. Chem.255, 2109–2113). It has now been found that a number of benzoate derivatives also bind and modulate rat kidney transpeptidase, as indicated by their ability to enhance the rate of inactivation of transpeptidase by the glutamine antagonist l-(αS, 5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125). Furthermore, rapid loss of transpeptidase activity results upon preincubation of the enzyme with the diazonium derivatives of p-aminohippurate and p-aminobenzoate. The modified enzyme can still hydrolyze γ-glutamyl substrates but is no longer modulated by hippurate and maleate. Loss of transpeptidase activity was not associated with incorporation of radioactive label from diazotized [14C]p-aminohippurate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the modified enzyme revealed a nondissociable species, Mr 68,000, shown to result from crosslinking of the two subunits of transpeptidase (Mr 46,000 and 22,000, respectively). The crosslinking of the subunits paralleled the extent of inactivation of transpeptidation activity and both crosslinking and inactivation were prevented by treatment with the diazotized derivatives in the presence of either hippurate or maleate. These and other data indicate that the diazonium derivatives of p-aminohippurate and p-aminobenzoate interact with the acceptor binding site and produce a stable bond between amino acid residues in the vicinity of this site which, thus, appears to be located in the intersubunit contact region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号