首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   32篇
  国内免费   2篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   14篇
  2017年   19篇
  2016年   7篇
  2015年   13篇
  2014年   5篇
  2013年   25篇
  2012年   23篇
  2011年   20篇
  2010年   8篇
  2009年   8篇
  2008年   16篇
  2007年   21篇
  2006年   18篇
  2005年   15篇
  2004年   17篇
  2003年   17篇
  2002年   18篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   8篇
  1989年   11篇
  1988年   6篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1982年   5篇
  1981年   3篇
  1979年   4篇
  1977年   2篇
  1975年   3篇
  1973年   3篇
  1970年   2篇
  1968年   2篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
  1951年   1篇
排序方式: 共有392条查询结果,搜索用时 15 毫秒
11.
Vanadate (+5) is a potent inhibitor of a variety of ATPases including dynein ATPase. We describe a method useful for estimating the functional dissociation rate of vanadate from the active site which does not rely on classical physical separation techniques. The method involves spectrophotometrically monitoring the enzymatic activity as the inhibitor dissociates from the enzyme and is inactivated by norepinephrine. Norepinephrine effectively reverses vanadate inhibition by reducing vanadate (+5) to oxovanadium (+4). This reduction by norepinephrine is sufficiently fast for these purposes--addition of vanadate after norepinephrine shows no inhibition of ATPase activity. The mathematical estimation procedure is generally useful for estimation of dissociation rates of other reversible inhibitors which can be quickly inactivated after dissociation from the enzyme. The rate of dissociation of vanadate from dynein with ATP and 2-N3ATP as substrates using this method was estimated to be in the ranges 0.0023-0.0042 and 0.0057-0.0075 s-1, respectively. These rates permit estimation of the rates of vanadate association with dynein by using the reported dissociation constant for vanadate. The results are consistent with the very fast and potent inhibition of dynein ATPase activity observed.  相似文献   
12.
Photosystem II (PSII) functions mainly as a dimer to catalyze the light energy conversion and water oxidation reactions. However, monomeric PSII also exists and functions in vivo in some cases. The crystal structure of monomeric PSII has been solved at 3.6 Å resolution, but it is still not clear which factors contribute to the formation of the dimer. Here, we solved the structure of PSII monomer at a resolution of 2.78 Å using cryo-electron microscopy (cryo-EM). From our cryo-EM density map, we observed apparent differences in pigments and lipids in the monomer-monomer interface between the PSII monomer and dimer. One β-carotene and two sulfoquinovosyl diacylglycerol (SQDG) molecules are found in the monomer-monomer interface of the dimer structure but not in the present monomer structure, although some SQDG and other lipid molecules are found in the analogous region of the low-resolution crystal structure of the monomer, or cryo-EM structure of an apo-PSII monomer lacking the extrinsic proteins from Synechocystis sp. PCC 6803. In the current monomer structure, a large part of the PsbO subunit was also found to be disordered. These results indicate the importance of the β-carotene, SQDG and PsbO in formation of the PSII dimer.  相似文献   
13.
14.
15.
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy.  相似文献   
16.
Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.).  相似文献   
17.

Background

Pregnancy-related (PR) deaths are often a result of direct obstetric complications occurring at childbirth.

Methods and Findings

To estimate the burden of and characterize risk factors for PR mortality, we evaluated deaths that occurred between 2003 and 2008 among women of childbearing age (15 to 49 years) using Health and Demographic Surveillance System data in rural western Kenya. WHO ICD definition of PR mortality was used: “the death of a woman while pregnant or within 42 days of termination of pregnancy, irrespective of the cause of death”. In addition, symptoms and events at the time of death were examined using the WHO verbal autopsy methodology. Deaths were categorized as either (i) directly PR: main cause of death was ascribed as obstetric, or (ii) indirectly PR: main cause of death was non-obstetric. Of 3,223 deaths in women 15 to 49 years, 249 (7.7%) were PR. One-third (34%) of these were due to direct obstetric causes, predominantly postpartum hemorrhage, abortion complications and puerperal sepsis. Two-thirds were indirect; three-quarters were attributable to human immunodeficiency virus (HIV/AIDS), malaria and tuberculosis. Significantly more women who died in lower socio-economic groups sought care from traditional birth attendants (p = 0.034), while less impoverished women were more likely to seek hospital care (p = 0.001). The PR mortality ratio over the six years was 740 (95% CI 651–838) per 100,000 live births, with no evidence of reduction over time (χ2 linear trend = 1.07; p = 0.3).

Conclusions

These data supplement current scanty information on the relationship between infectious diseases and poor maternal outcomes in Africa. They indicate low uptake of maternal health interventions in women dying during pregnancy and postpartum, suggesting improved access to and increased uptake of skilled obstetric care, as well as preventive measures against HIV/AIDS, malaria and tuberculosis among all women of childbearing age may help to reduce pregnancy-related mortality.  相似文献   
18.
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote.  相似文献   
19.
A new cell line of human ovarian clear cell carcinoma (CCC), TU-OC-2, was established and characterized. The cells were polygonal in shape, grew in monolayers without contact inhibition and were arranged in islands like pieces of a jigsaw puzzle. The chromosome numbers ranged from 41 to 96. A low rate of proliferation was observed and the doubling time was 37.5 h. The IC50 values of cisplatin, 7-ethyl-10-hydroxycamptothecin (SN38), which is an active metabolite of camptothecin, and paclitaxel were 7.7 μM, 17.7 nM and 301 nM, respectively. The drug sensitivity assay indicated that TU-OC-2 was sensitive to SN38, but resistant to cisplatin and paclitaxel. Mutational analysis revealed that TU-OC-2 cells have no mutations of PIK3CA in exons 9 and 20 and of TP53 in exons 4–9. We observed the loss of ARID1A protein expression in TU-OC-2 cells by western blot analysis and in the original tumor tissue by immunohistochemistry. This cell line may be useful for studying the chemoresistant mechanisms of CCC and exploring novel therapeutic targets such as the ARID1A-related signaling pathway.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号