首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   3篇
  国内免费   2篇
  2021年   4篇
  2019年   1篇
  2017年   4篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
11.
12.
The fine-scale spatial genetic structure (SGS) of alpine plants is receiving increasing attention, from which seed and pollen dispersal can be inferred. However, estimation of SGS may depend strongly on the sampling strategy,including the sample size and spatial sampling scheme. Here, we examined the effects of sample size and three spatial schemes, simple-random, line-transect, and random-cluster sampling, on the estimation of SGS in Androsace tapete, an alpine cushion plant endemic to Qinghai-Tibetan Plateau. Using both real data and simulated data of dominant molecular markers, we show that: (i) SGS is highly sensitive to sample strategy especially when the sample size is small (e.g., below 100); (ii) the commonly used SGS parameter (the intercept of the autocorrelogram) is more susceptible to sample error than a newly developed Sp statistic; and (iii) the random-cluster scheme is susceptible to obvious bias in parameter estimation even when the sample size is relatively large (e.g., above 200). Overall,the line-transect scheme is recommendable, in that it performs slightly better than the simple-random scheme in parameter estimation and is more efficient to encompass broad spatial scales. The consistency between simulated data and real data implies that these findings might hold true in other alpine plants and more species should be examined in future work.  相似文献   
13.
? Premise of the study: Microsatellite markers were developed in an alpine plant endemic to the Qinghai-Tibetan Plateau, Androsace tapete, to investigate its spatial genetic structure, gene flow, and mating patterns. ? Methods and Results: Using the combined biotin capture method, 16 microsatellite primer sets were isolated and characterized. Fifteen of these markers showed polymorphism, and the number of alleles per locus ranged from three to 13 across 56 individuals from six Tibetan populations. ? Conclusions: These markers provide a useful tool to investigate the spatial genetic structure, gene flow, and mating system of A. tapete.  相似文献   
14.
Abstract The fine‐scale spatial genetic structure (SGS) of alpine plants is receiving increasing attention, from which seed and pollen dispersal can be inferred. However, estimation of SGS may depend strongly on the sampling strategy, including the sample size and spatial sampling scheme. Here, we examined the effects of sample size and three spatial schemes, simple‐random, line‐transect, and random‐cluster sampling, on the estimation of SGS in Androsace tapete, an alpine cushion plant endemic to Qinghai‐Tibetan Plateau. Using both real data and simulated data of dominant molecular markers, we show that: (i) SGS is highly sensitive to sample strategy especially when the sample size is small (e.g., below 100); (ii) the commonly used SGS parameter (the intercept of the autocorrelogram) is more susceptible to sample error than a newly developed Sp statistic; and (iii) the random‐cluster scheme is susceptible to obvious bias in parameter estimation even when the sample size is relatively large (e.g., above 200). Overall, the line‐transect scheme is recommendable, in that it performs slightly better than the simple‐random scheme in parameter estimation and is more efficient to encompass broad spatial scales. The consistency between simulated data and real data implies that these findings might hold true in other alpine plants and more species should be examined in future work.  相似文献   
15.
The Na/Ca-K exchanger (NCKX) utilizes the inward sodium gradient and outward potassium gradient for Ca(2+) extrusion; two distinct NCKX isoforms are expressed in the outer segments of retinal rod (NCKX1) and cone (NCKX2) photoreceptors, respectively, where NCKX extrudes Ca(2+) that enters photoreceptors via the cGMP-gated channels. We carried out the first systematic NCKX mutagenesis study in which 96 residues were mutated in the human cone NCKX2 cDNA, and functional consequences of these mutations were measured; the residues selected for mutagenesis are conserved between rod and cone NCKX, the large majority are also conserved in NCKX paralogs found in lower organisms, and finally, they include the few residues conserved between members of the NCKX and members of the NCX (potassium-independent Na/Ca exchange) gene families. Twenty-five residues were identified for which mutagenesis reduced NCKX function to <20% of wild-type cone NCKX2 activity, while protein expression and plasma membrane targeting were not affected. Three classes of residues were found to be most sensitive toward mutagenesis: acidic (glutamate/aspartate) residues, polar (serines/threonine) residues, and glycine residues. These results are discussed with respect to residues that may contribute to the NCKX cation binding site(s).  相似文献   
16.
17.
18.
? Premise of the study: Microsatellite markers were developed in Saussurea gnaphalodes to investigate its genetic variation and population structure. ? Methods and Results: Using the combined biotin capture method, 46 microsatellite primer sets were isolated and characterized across 48 S. gnaphalodes individuals from three Tibetan populations. Seventeen of these markers showed polymorphism, and the number of alleles ranged from two to 17. The observed and expected heterozygosities per population ranged from 0 to 0.938 and from 0 to 0.905, respectively. ? Conclusions: These markers provide a useful tool to investigate the genetic diversity and population structure of S. gnaphalodes, and to facilitate further studies on conservation and utilization.  相似文献   
19.
20.
High‐altitude soils potentially store a large pool of carbon (C) and nitrogen (N). The assessment of total C and N stocks in soils is vital to understanding the C and N dynamics in terrestrial ecosystems. In this study, we examined effects of altitude and forest composition on soil C and N along a transect from 317 to 3300 m a.s.l. in the eastern Himalayas. We used meta‐analysis to establish the context for our results on the effects of altitude on soil C, including variation with depth. Total C and N contents of soils significantly increased with altitude, but decreased with soil depth. Carbon and N were similarly correlated with altitude and temperature, and temperature was seemingly the main driver of soil C along the altitudinal gradient. Altitude accounted for 73% of the variation in C and 47% of the variation in N stocks. Soil pH and cation exchange capacity were correlated with both soil C and N stocks. Increases in soil C and N stocks were related to forest composition, forest basal area as well as quantity of leaf litter that were in turn influenced by altitude and temperature. Concentrations of C in foliage increased by 2.1% for every 1000 m rise in altitude, while that in leaf litter increased by 2.3%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号