首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   994篇
  免费   67篇
  国内免费   1篇
  1062篇
  2023年   8篇
  2022年   8篇
  2021年   27篇
  2020年   12篇
  2019年   14篇
  2018年   23篇
  2017年   15篇
  2016年   23篇
  2015年   38篇
  2014年   40篇
  2013年   68篇
  2012年   63篇
  2011年   60篇
  2010年   43篇
  2009年   30篇
  2008年   50篇
  2007年   55篇
  2006年   48篇
  2005年   38篇
  2004年   43篇
  2003年   27篇
  2002年   30篇
  2001年   22篇
  2000年   17篇
  1999年   14篇
  1998年   8篇
  1993年   5篇
  1992年   13篇
  1991年   8篇
  1990年   10篇
  1989年   9篇
  1988年   10篇
  1987年   12篇
  1986年   12篇
  1985年   11篇
  1984年   7篇
  1983年   10篇
  1981年   11篇
  1980年   7篇
  1979年   8篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1975年   7篇
  1974年   11篇
  1973年   14篇
  1972年   10篇
  1971年   5篇
  1970年   5篇
  1969年   7篇
排序方式: 共有1062条查询结果,搜索用时 0 毫秒
21.
Previously, we showed that interactions between p90RSK1 (RSK1) and the subunits of type I protein kinase A (PKA) regulate the activity of PKA and cellular distribution of active RSK1 (Chaturvedi, D., Poppleton, H. M., Stringfield, T., Barbier, A., and Patel, T. B. (2006) Mol. Cell Biol. 26, 4586–4600). Here we examined the role of the PKARIα subunit of PKA in regulating RSK1 activation and cell survival. In mouse lung fibroblasts, silencing of the PKARIα increased the phosphorylation and activation of RSK1, but not of RSK2 and RSK3, in the absence of any stimulation. Silencing of PKARIα also decreased the nuclear accumulation of active RSK1 and increased its cytoplasmic content. The increased activation of RSK1 in the absence of any agonist and changes in its subcellular redistribution resulted in increased phosphorylation of its cytoplasmic substrate BAD and increased cell survival. The activity of PKA and phosphorylation of BAD (Ser-155) were also enhanced when PKARIα was silenced, and this, in part, contributed to increased cell survival in unstimulated cells. Furthermore, we show that RSK1, PKA subunits, D-AKAP1, and protein phosphatase 2A catalytic subunit (PP2Ac) exist in a complex, and dissociation of RSK1 from D-AKAP1 by either silencing of PKARIα, depletion of D-AKAP1, or by using a peptide that competes with PKARIα for binding to AKAPs, decreased the amount of PP2Ac in the RSK1 complex. We also demonstrate that PP2Ac is one of the phosphatases that dephosphorylates RSK, but not ERK1/2. Thus, in unstimulated cells, the increased phosphorylation and activation of RSK1 after silencing of PKARIα or depletion of D-AKAP1 are due to decreased association of PP2Ac in the RSK1 complex.Cyclic AMP-dependent protein kinase (PKA)3 plays a pivotal role in manifesting an array of biological actions ranging from cell proliferation and tumorigenesis to increased inotropic and chronotropic effects in the heart as well as regulation of long term potentiation and memory. The PKA holoenzyme is a heterotetramer and consists of two catalytic (PKAc) subunits bound to a dimer of regulatory subunits. To date, four isoforms of the PKAc (PKAcα, PKAcβ, PKAcγ, and PKAcδ) and four isoforms of the regulatory subunits (RIα, RIβ, RIIα, and RIIβ) have been described (1). The various isoforms of PKA subunits are expressed differently in a tissue- and cell-specific manner (2). In addition to binding and inhibiting the activity of PKAc via their pseudo substrate region (36), the R subunits also interact with PKA-anchoring proteins (AKAPs) and facilitate the localization of PKA in specific subcellular compartments (7, 8). More than 50 AKAP family members have been described, and although most of these have a higher affinity for the RII subunits (9), certain AKAPs such as D-AKAP1 and D-AKAP2 preferentially bind the PKARIα subunit (1012). Because the AKAPs also bind other signaling molecules such as phosphatases (PP2B) and kinases (protein kinase C), they act as scaffolds to organize and integrate specific signaling events within specific compartments in the cells (7, 8, 13, 14).We have shown that the PKARIα and PKAcα subunits of PKA interact with the inactive and active forms of p90RSK1 (RSK1), respectively (15). Binding of inactive RSK1 to PKARIα decreases the interactions between PKARIα and PKAc, whereas the association of active RSK1 with PKAc increases interactions between PKARIα and PKAc such that larger amounts of cAMP are required to activate PKAc in the presence of active RSK1 (15). Moreover, the indirect (via subunits of PKA) interaction of RSK1 with AKAPs is required for the nuclear localization of active RSK1 (15), and disruption of the interactions of RSK1·PKA complex from AKAPs results in increased cytoplasmic distribution of active RSK1 with a concomitant increase in phosphorylation of its cytosolic substrates such as BAD and reduced cellular apoptosis (15). These findings show the functional and biological significance of RSK1·PKA·AKAP interactions.Besides inhibiting PKAc activity, the physiological role of PKARIα is underscored by the findings that mutations in the PKAR1A gene that result in haploinsufficiency of PKARIα are the underlying cause of Carney complex (CNC) (16, 17). CNC is an autosomal dominant multiple neoplasia syndrome in which myxomas of the skin, heart, and/or vicera are recurrent and also associated with high incidence of endocrine and ovarian tumors as well as Schwannomas (1820). The majority of patients with the multiple neoplasia CNC syndrome harbor mutations in the PKAR1A gene (21) that result in PKARIα haploinsufficiency. Importantly, however, loss of heterozygosity or alterations in PKA activity may not contribute toward the tumorigenicity in either CNC patients or mouse model of CNC (21). This suggests that loss of function(s) of PKARIα other than inhibition of PKA activity is(are) involved in the enhanced tumorigenicity in CNC patients and in the murine CNC model.Because RSK1 regulates cell growth, survival, and tumorigenesis (2227), and because its subcellular localization and ability to inhibit apoptosis is regulated by its interactions via PKARIα with AKAPs (15), we reasoned that in conditions such as CNC where PKARIα levels are decreased, the increase in tumorigenicity may emanate from aberrant regulation of the activity and/or subcellular localization of RSK1. Therefore, herein we have investigated whether PKARIα regulates the activation of RSK1 and its biological functions. Decreasing expression of PKARIα by small interfering RNA (siRNA) enhanced the activation of RSK1, but not RSK2 or RSK3, in the absence of an agonist such as EGF. This was accompanied by an increase in the cytoplasmic localization of the active RSK1 and enhanced cell survival in the absence of any growth factor. Silencing of PKARIα also increased PKAc activity and while part of the anti-apoptotic response could be attributed to an increase in PKAc activity, activation of RSK1 under basal conditions contributed significantly to cell survival. The elevation in RSK1 activity upon PKARIα silencing was not due to increased PKAc activity. Rather the activation of RSK1 in the absence of PKARIα was due to a decrease in PP2A in the RSK1 complex. These findings demonstrate a novel role for PKARIα in the regulation of RSK1 activation, a key enzyme that mediates the downstream actions of the ERK1/2 cascade.  相似文献   
22.
23.
Summary Intravenous injections into nude mice of 5 mg/kg methotrexate (MTX) linked to the antibody to human high molecular weight-melanoma associated antigen (HMW-MAA), monoclonal antibody (mAb) 225.28, an IgG2a, on days 1, 4, 7, 10 and 14, starting 24 h after subcutaneous inoculation of 2 × 106 cultured human M21 melanoma cells inhibited mean tumor volume by 90% on day 14 and by 65% on day 50 after the beginning of the treatment. Injections of equimolar amounts of free MTX and MTX linked to normal mouse IgG or to an isotypematched myeloma protein did not inhibit tumor growth significantly. MTX linked to mAb 225.28 did not inhibit the xenograft of a subline of human melanoma cell line M21 without detectable expression of HMW-MAA. In a clonogenic assay, the MTX-225.28 conjugate was three times more potent in inhibiting the growth of M21 melanoma cells than free MTX, but did not inhibit the growth of kidney carcinoma cells Caki-1, which do not express high-M r MAA. In contrast, MTX linked to the mAb DAL K29, reacting with kidney carcinoma cells Caki-1, inhibited their growth but did not affect that of melanoma cells. M21 melanoma cells isolated from the residual tumor of a mouse treated with the MTX-225.28 conjugate did not differ in their reactivity with mAb 225.28 and in their sensitivity to MTX when compared with M21 cells from an untreated mouse.  相似文献   
24.
Increased kynurenine pathway metabolism has been implicated in the aetiology of the AIDS dementia complex (ADC). The rate limiting enzyme for this pathway is indoleamine 2,3-dioxygenase (IDO). We tested the efficacy of different strains of HIV-1 (HIV1-BaL, HIV1-JRFL and HIV1-631) to induce IDO in cultured human monocyte-derived macrophages (MDM). A significant increase in both IDO protein and kynurenine synthesis was observed after 48 h in MDM infected with the brain derived HIV-1 isolates, laboratory adapted (LA) HIV1-JRFL, and primary isolate HIV1-631. In contrast, almost no kynurenine production or IDO protein was evident in MDM infected with the high replicating macrophage tropic LA strain, HIV1-BaL. The induction of IDO and kynurenine synthesis by HIV1-JRFL and HIV1-631 declined to baseline levels by day-8 post-infection. Together, these results indicate that only selected strains of HIV-1 are capable of inducing IDO synthesis and subsequent oxidative tryptophan catabolism in MDM.  相似文献   
25.
S-Adenosylmethionine decarboxylase belongs to a small class of amino acid decarboxylases that use a covalently bound pyruvate as a prosthetic group. It is an essential enzyme for polyamine biosynthesis and provides an important target for the design of anti-parasitic and cancer chemotherapeutic agents. We have determined the structures of S-adenosylmethionine decarboxylase complexed with the competitive inhibitors methylglyoxal bis(guanylhydrazone) and 4-amidinoindan-1-one-2'-amidinohydrazone as well as the irreversible inhibitors 5'-deoxy-5'-[N-methyl-N-[(2-aminooxy)ethyl]amino]adenosine, 5'-deoxy-5'-[N-methyl-N-(3-hydrazinopropyl)amino]adenosine, and the methyl ester analogue of S-adenosylmethionine. These structures elucidate residues important for substrate binding and show how those residues interact with both covalently and noncovalently bound inhibitors. S-Adenosylmethionine decarboxylase has a four-layer alphabeta betaalpha sandwich fold with residues from both beta-sheets contributing to substrate and inhibitor binding. The side chains of conserved residues Phe7, Phe223, and Glu247 and the backbone carbonyl of Leu65 play important roles in binding and positioning the ligands. The catalytically important residues Cys82, Ser229, and His243 are positioned near the methionyl group of the substrate. One molecule of putrescine per monomer is observed between the two beta-sheets but far away from the active site. The activating effects of putrescine may be due to conformational changes in the enzyme, to electrostatic effects, or both. The adenosyl moiety of the bound ligand is observed in the unusual syn conformation. The five structures reported here provide a framework for interpretation of S-adenosylmethionine decarboxylase inhibition data and suggest strategies for the development of more potent and more specific inhibitors of S-adenosylmethionine decarboxylase.  相似文献   
26.
Benzothiophene derivatives like benzothiophene sulphonamides, biphenyls, or carboxyls have been synthesized and have found wide pharmacological usage. Here we report, bromo-benzothiophene carboxamide derivatives as potent, slow tight binding inhibitors of Plasmodium enoyl-acyl carrier protein (ACP) reductase (PfENR). 3-Bromo-N-(4-fluorobenzyl)-benzo[b]thiophene-2-carboxamide (compound 6) is the most potent inhibitor with an IC50 of 115 nM for purified PfENR. The inhibition constant (Ki) of compound 6 was 18 nM with respect to the cofactor and 91 nM with respect to crotonoyl-CoA. These inhibitors showed competitive kinetics with cofactor and uncompetitive kinetics with the substrate. Thus, these compounds hold promise for the development of potent antimalarials.  相似文献   
27.
Sprouty (Spry) proteins are important regulators of receptor tyrosine kinase signaling in development and disease. Alterations in cellular Spry content have been associated with certain forms of cancers and also in cardiovascular diseases. Thus, understanding the mechanisms that regulate cellular Spry levels are important. Herein, we demonstrate that Spry1 and Spry2, but not Spry3 or Spry4, associate with the HECT domain family E3 ubiquitin ligase, Nedd4. The Spry2/Nedd4 association involves the WW domains of Nedd4 and requires phosphorylation of the Mnk2 kinase sites, Ser112 and Ser121, on Spry2. The phospho-Ser112/121 region on Spry2 that binds WW domains of Nedd4 is a novel non-canonical WW domain binding region that does not contain Pro residues after phospho-Ser. Endogenous and overexpressed Nedd4 polyubiquitinate Spry2 via Lys48 on ubiquitin and decrease its stability. Silencing of endogenous Nedd4 increased the cellular Spry2 content and attenuated fibroblast growth factor-elicited ERK1/2 activation that was reversed when elevations in Spry2 levels were prevented by Spry2-specific small interfering RNA. Mnk2 silencing decreased Spry2-Nedd4 interactions and also augmented the ability of Spry2 to inhibit fibroblast growth factor signaling. This is the first report demonstrating the regulation of cellular Spry content and its ability to modulate receptor tyrosine kinase signaling by a HECT domain-containing E3 ubiquitin ligase.  相似文献   
28.
The possible differential effects of ABO blood group materno-paternal (fetal) incompatibility on completed reproductive performance were investigated on a sample of 100 couples (100 fathers and 100 mothers) from three villages in the Jind district of Haryana state, India. The average number of live births per mating couple was slightly higher for the incompatible matings (5.32) than the compatible ones (5.05). This advantage was offset by higher postnatal mortality in the former. Consequently, the average number of living children in the compatible matings (4.64) was higher than in the incompatible ones (4.18). With reference to individual ABO matings, the index of relative fertility (Irf) was the highest in A x AB followed by B x A type of incompatible matings. No decrease in live births in O x A and O x B incompatible matings was observed compared with their reciprocal compatible ones, i.e. A x O and B x O matings, as has been hypothesized in previous studies. The total pregnancy wastage was substantially higher in ABO-incompatible matings (24.59%) than compatible matings (8.45%). About 71% of the postnatal deaths took place within one year of the birth in the case of incompatible matings compared with 50% in the case of compatible matings. The study supports the hypothesis that selection is operative at the ABO locus as revealed by the measures of selection intensity. The loss of fitness in the present sample was associated with differential mortality. There were no differences in the proportions of average number of male live births in the compatible (0.55) and incompatible matings (0.58). However, in the individual mating types, there was some evidence of higher or lower proportions of male live births.  相似文献   
29.
The establishment of lacZ marked strain of P-solubilizing bacterium Pseudomonas in the rhizosphere of mungbean (Vigna radiata) under pothouse conditions was studied. The lacZ marker was transferred to Pseudomonas P-36 on LB medium using donor strain of E. coli. The lacZ marked strain formed blue colonies on selective media and could be identified from soil on the basis of this character. The lacZ marked strain was able to survive in rhizosphere of mungbean under pothouse conditions and maintained a population of about 104 g?1 of rhizosphere soils up to 60 days study period. Positive effect of inoculation with P-solubilizing bacterium on dry matter yield, P and N-uptake was observed using rock phosphate and single super phosphate as P sources with and without farmyard amendment.  相似文献   
30.
Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp) derived from the receptor binding region of human apolipoprotein E (apoE) inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号