首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   40篇
  国内免费   1篇
  603篇
  2023年   7篇
  2022年   4篇
  2021年   20篇
  2020年   9篇
  2019年   13篇
  2018年   14篇
  2017年   13篇
  2016年   14篇
  2015年   22篇
  2014年   26篇
  2013年   25篇
  2012年   18篇
  2011年   34篇
  2010年   32篇
  2009年   17篇
  2008年   22篇
  2007年   25篇
  2006年   23篇
  2005年   21篇
  2004年   29篇
  2003年   12篇
  2002年   22篇
  2001年   13篇
  2000年   5篇
  1999年   13篇
  1998年   4篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1989年   8篇
  1987年   4篇
  1986年   7篇
  1985年   8篇
  1984年   6篇
  1983年   8篇
  1982年   12篇
  1981年   5篇
  1980年   6篇
  1979年   9篇
  1978年   7篇
  1977年   4篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1968年   4篇
  1967年   2篇
  1963年   2篇
排序方式: 共有603条查询结果,搜索用时 15 毫秒
51.
An endophytic fungus having antifungal and antibacterial properties was isolated from Taxus wallichiana of Arunachal Pradesh, India. On the basis of morphological and molecular characteristics, the fungus was identified as Fusarium sp. and designated as DF2. The fungus was optimized for growth and maximum production of the antimicrobial agent. Media with 5% leaf extract (w/v) supplemented with 0.1% dextrose as carbon and yeast extract as nitrogen source favored the growth with temperature optimum 25 ± 2°C and pH 6. Incubation period of 10 days was observed optimum for growth and production of antimicrobial agent. Phenylalanine and dextrose enriched basal medium promoted the antimicrobial agent production, whereas methionine amended in combination with glucose promoted higher biomass accumulation. The TLC purified active compound with UV λ-max 270 nm in ethyl acetate has got the lowest minimum inhibitory concentration (MIC) against Bacillus subtilis, Staphylococcus aureus and Escherichia coli and highest against Pseudomonas aeruginosa.  相似文献   
52.
Jain T  Jayaram B 《FEBS letters》2005,579(29):6659-6666
We report here a computationally fast protocol for predicting binding affinities of non-metallo protein-ligand complexes. The protocol builds in an all atom energy based empirical scoring function comprising electrostatics, van der Waals, hydrophobicity and loss of conformational entropy of protein side chains upon ligand binding. The method is designed to ensure transferability across diverse systems and has been validated on a heterogenous dataset of 161 complexes consisting of 55 unique protein targets. The scoring function trained on a dataset of 61 complexes yielded a correlation of r=0.92 for the predicted binding free energies against the experimental binding affinities. Model validation and parameter analysis studies ensure the predictive ability of the scoring function. When tested on the remaining 100 protein-ligand complexes a correlation of r=0.92 was recovered. The high correlation obtained underscores the potential applicability of the methodology in drug design endeavors. The scoring function has been web enabled at as binding affinity prediction of protein-ligand (BAPPL) server.  相似文献   
53.
Competitive inhibition of soybean urease by 15 triketone oximes has been studied at 36 degrees C in aqueous solution (pH 4.95). The studied oximes are supposed chelators for the nickel atom in the urease metallocenter. The inhibition constants of urea hydrolysis (K(i)) varied in the range 2.7-248 microM depending on the oxime structure. Analysis of this dependency demonstrates that the optimal inhibitor is the one containing carbonyl group in position 1 of the cycle, the ethoxyimino group and alkyl residue in the substituent in position 2, as well as the methoxycarbonyl group in position 4 of the cycle.  相似文献   
54.
Dutta K  Shi H  Cruz-Chu ER  Kami K  Ghose R 《Biochemistry》2004,43(25):8094-8106
An analysis of the backbone dynamics of the C-terminal Src homology 3 (SH3) domain of p67(phox), p67(phox)SH3(C), in complex with a 32-residue high-affinity (K(d) = 24 nM) peptide, Pf, from the C-terminal region of p47(phox) is presented. This paper represents the first detailed analysis of the backbone dynamics and the ligand-induced changes therein of a high-affinity, high-specificity interaction involving an SH3 domain. The dynamic features are compared with those in the high-affinity, highly specific interaction between the SH3 domain of C-terminal Src kinase (Csk-SH3) and a proline-rich peptide from proline-enriched phosphatase (PEP). Both systems share common dynamic features especially in the canonical PxxP motif recognition surface where slow micro- to millisecond time scale dynamics persist on complex formation especially in several residues that are implicated in ligand recognition and in stabilizing the SH3 fold. These residues are highly conserved in SH3 domains. Ile505, which lies outside the PxxP recognition motif on p67(phox)SH3(C) and is key in conferring high specificity to the p67(phox)SH3(C)/Pf interaction, becomes more disordered upon complex formation. This behavior is similar to that seen in the residues that constitute the specificity surface in Csk-SH3.  相似文献   
55.
Eg5 is a slow, plus-end-directed microtubule-based motor of the BimC kinesin family that is essential for bipolar spindle formation during eukaryotic cell division. We have analyzed two human Eg5/KSP motors, Eg5-367 and Eg5-437, and both are monomeric based on results from sedimentation velocity and sedimentation equilibrium centrifugation as well as analytical gel filtration. The steady-state parameters were: for Eg5-367: k(cat) = 5.5 s(-1), K(1/2,Mt) = 0.7 microm, and K(m,ATP) = 25 microm; and for Eg5-437: k(cat) = 2.9 s(-1), K(1/2,Mt) = 4.5 microm, and K(m,ATP) = 19 microm. 2'(3')-O-(N-Methylanthraniloyl)-ATP (mantATP) binding was rapid at 2-3 microm(-1)s(-1), followed immediately by ATP hydrolysis at 15 s(-1). ATP-dependent Mt.Eg5 dissociation was relatively slow and rate-limiting at 8 s(-1) with mantADP release at 40 s(-1). Surprisingly, Eg5-367 binds microtubules more effectively (11 microm(-1)s(-1)) than Eg5-437 (0.7 microm(-1)s(-1)), consistent with the steady-state K(1/2,Mt) and the mantADP release K(1/2,Mt). These results indicate that the ATPase pathway for monomeric Eg5 is more similar to conventional kinesin than the spindle motors Ncd and Kar3, where ADP product release is rate-limiting for steady-state turnover.  相似文献   
56.
Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some guided missiles. We suggest that the time-optimal strategy adopted by the bat is in response to the evolutionary pressures of having to capture erratic and fast moving insects.  相似文献   
57.
DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3′-OH/5′-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone 15N spin relaxation and 15N,1H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5′-phosphate.  相似文献   
58.
Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) is an evolutionary conserved protein kinase that coordinates cellular metabolism with metabolic demand in yeast and mammals. The molecular mechanisms underlying PASK regulation, however, remain unknown. Herein, we describe a crystal structure of the kinase domain of human PASK, which provides insights into the regulatory mechanisms governing catalysis. We show that the kinase domain adopts an active conformation and has catalytic activity in vivo and in vitro in the absence of activation loop phosphorylation. Using site-directed mutagenesis and structural comparison with active and inactive kinases, we identified several key structural features in PASK that enable activation loop phosphorylation-independent activity. Finally, we used combinatorial peptide library screening to determine that PASK prefers basic residues at the P-3 and P-5 positions in substrate peptides. Our results describe the key features of the PASK structure and how those features are important for PASK activity and substrate selection.  相似文献   
59.
The formation and plasticity of synaptic connections rely on regulatory interactions between pre- and postsynaptic cells. We show that the Drosophila heparan sulfate proteoglycans (HSPGs) Syndecan (Sdc) and Dallylike (Dlp) are synaptic proteins necessary to control distinct aspects of synaptic biology. Sdc promotes the growth of presynaptic terminals, whereas Dlp regulates active zone form and function. Both Sdc and Dlp bind at high affinity to the protein tyrosine phosphatase LAR, a conserved receptor that controls both NMJ growth and active zone morphogenesis. These data and double mutant assays showing a requirement of LAR for actions of both HSPGs lead to a model in which presynaptic LAR is under complex control, with Sdc promoting and Dlp inhibiting LAR in order to control synapse morphogenesis and function.  相似文献   
60.
In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetraamine macrocyclic ligand complex, the kinetic of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam = 1,4,7,11-tetraazacyclotetradecane) has been examined spectrophotometrically. All kinetic data have been satisfactorily fitted by the rate law, R = (k1KOH[OH]2 + k2[OH])(1 + KOH[OH])−1(cis-[Ni(isocyclam)(H2O)2]2+ + [Ni(isocyclam)(OH)]+), where k2 = (3.40 ± 0.12) × 103 dm3 mol−1 s−1 is almost equal to kOH determined in buffer solution (lowly basic media), KOH = 22.7 ± 1.4 dm3 mol−1 at I (ionic strength) = 0.10 mol dm−3 (NaClO4 + NaOH) and 25.0 °C. Rate constants, k2 and KOH, are functions of ionic strength, giving a good evidence for an intermolecular pathway. The reaction follows a free-base-catalyzed mechanism where nitrogen inversion, solvation and ring conformational changes are occurred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号