首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1359篇
  免费   77篇
  1436篇
  2022年   14篇
  2021年   19篇
  2020年   15篇
  2019年   12篇
  2018年   17篇
  2017年   18篇
  2016年   25篇
  2015年   54篇
  2014年   42篇
  2013年   78篇
  2012年   93篇
  2011年   85篇
  2010年   60篇
  2009年   44篇
  2008年   85篇
  2007年   89篇
  2006年   85篇
  2005年   87篇
  2004年   71篇
  2003年   69篇
  2002年   61篇
  2001年   28篇
  2000年   31篇
  1999年   25篇
  1998年   14篇
  1997年   12篇
  1996年   8篇
  1995年   11篇
  1994年   5篇
  1993年   10篇
  1992年   12篇
  1991年   16篇
  1990年   11篇
  1989年   12篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   14篇
  1981年   7篇
  1980年   4篇
  1979年   4篇
  1977年   5篇
  1976年   4篇
  1974年   5篇
  1973年   4篇
  1972年   5篇
  1969年   5篇
  1968年   4篇
排序方式: 共有1436条查询结果,搜索用时 14 毫秒
121.
The cysteine-free pyrrolidone carboxyl peptidase (PCP-0SH) from a hyperthermophile, Pyrococcus furiosus, can be trapped in the denatured state under nondenaturing conditions, corresponding to the denatured structure that exists in equilibrium with the native state under physiological conditions. The denatured state is the initial state (D1 state) in the refolding process but differs from the completely denatured state (D2 state) in the concentrated denaturant. Also, it has been found that the D1 state corresponds to the heat-denatured state. To elucidate the structural basis of the D1 state, H/D exchange experiments with PCP-0SH were performed at pD 3.4 and 4 degrees C. The results indicated that amide protons in the C-terminal alpha6-helix region hardly exchanged in the D1 state with deuterium even after 7 days, suggesting that the alpha6-helix (from Ser188 to Glu205) of PCP-0SH was stably formed in the D1 state. In order to examine the role of the alpha6-helix in folding and stability, H/D exchange experiments with a mutant, A199P, at position 199 in the alpha6-helix region were performed. The alpha6-helix region of A199P in the D1 state was partially unprotected, while some hydrophobic residues were protected against the H/D exchange, although these hydrophobic residues were unprotected in the wild-type protein. These results suggest that the structure of A199P in the D1 state formed a temporary stable denatured structure with a non-native hydrophobic cluster and the unstructured alpha6-helix. Both the stability and the refolding rate decreased by the substitution of Pro for Ala199. We can conclude that the native-like helix (alpha6-helix) of PCP-0SH is already constructed in the D1 state and is necessary for efficient refolding into the native structure and stabilization of PCP-0SH.  相似文献   
122.
Bacillus stearothermophilus alpha-1,4-glucosidase (BS) is highly specific for alpha-1,4-glucosidic bonds of maltose, maltooligosaccharides and alpha-glucans. Bacillus thermoglucosdasius oligo-1,6-glucosidase (BT) can specifically hydrolyse alpha-1,6 bonds of isomaltose, isomaltooligosaccharides and alpha-limit dextrin. The two enzymes have high homology in primary structure and belong to glycoside hydrolase family 13, which contain four conservative regions (I, II, III and IV). The two enzymes are suggested to be very close in structure, even though there are strict differences in their substrate specificities. Molecular determinants of substrate recognition in these two enzymes were analysed by site-directed mutagenesis. Twenty BT-based mutants and three BS-based mutants were constructed and characterized. Double substitutions in BT of Val200 -->Ala in region II and Pro258 -->Asn in region III caused an appearance of maltase activity compared with BS, and a large reduction of isomaltase activity. The values of k(0)/K(m) (s(-1). mM(-1)) of the BT-mutant for maltose and isomaltose were 69.0 and 15.4, respectively. We conclude that the Val/Ala200 and Pro/Asn258 residues in the alpha-glucosidases may be largely responsible for substrate recognition, although the regions I and IV also exert a slight influence. Additionally, BT V200A and V200A/P258N possessed high hydrolase activity towards sucrose.  相似文献   
123.
As the first step in understanding the molecular oscillation of the circa rhythms in the golden rabbitfish Siganus guttatus—a reef fish with a definite lunar-related rhythmicity—we cloned and sequenced a Period gene (rfPer). The rfPer gene contained an open reading frame that encodes a protein consisting of 1,452 amino acids; this protein is highly homologous to PER proteins of vertebrates including zebrafish. Phylogenetic analyses indicated that the rfPER protein is related to the zebrafish PER1 and PER4. The expression of rfPer mRNA in the whole brain, retina, and liver under light/dark (LD) conditions increased at 06:00 h and decreased at 18:00 h, suggesting that its robust circadian rhythm occurs in neural and peripheral tissues. When daily variation in the expression in rfPer mRNA in the whole brain and cultured pineal gland were examined under LD conditions, similar expression patterns of the gene were observed with an increase around dawn. Under constant light condition, the increased expression of rfPer mRNA in the whole brain disappeared around dawn. The present results demonstrate that rfPer is related to zPer4 and possibly zPer1. The present study is the first report on the Period gene from a marine fish.  相似文献   
124.
Pulmonary hypertension (PH) causes right ventricular (RV) hypertrophy and, according to the extent of pressure overload, eventual heart failure. We tested the hypothesis that the mechanical stress in PH-RV impairs the vasoreactivity of the RV coronary microvessels of different sizes with increased superoxide levels. Five-week-old male Sprague-Dawley rats were injected with monocrotaline (n=126) to induce PH or with saline as controls (n=114). After 3 wk, coronary arterioles (diameter = 30-100 microm) and small arteries (diameter = 100-200 microm) in the RV were visualized using intravital videomicroscopy. We evaluated ACh-induced vasodilation alone, in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME), in the presence of tetraethylammonium (TEA) or catalase with or without L-NAME, and in the presence of SOD. The degree of suppression in vasodilation by L-NAME and TEA was used as indexes of the contributions of endothelial nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), respectively. In PH rats, ACh-induced vasodilation was significantly attenuated in both arterioles and small arteries, especially in arterioles. This decreased vasodilation was largely attributable to reduced NO-mediated vasoreactivity, whereas the EDHF-mediated vasodilation was relatively robust. The suppressive effect on arteriolar vasodilation by catalase was similar to TEA in both groups. Superoxide, as measured by lucigenin chemiluminescence, was significantly elevated in the RV tissues in PH. SOD significantly ameliorated the impairment of ACh-induced vasodilation in PH. Robust EDHF function will play a protective role in preserving coronary microvascular homeostasis in the event of NO dysfunction with increased superoxide levels.  相似文献   
125.
A protein crystal lattice consists of surface contact regions, where the interactions of specific groups play a key role in stabilizing the regular arrangement of the protein molecules. In an attempt to control protein incorporation in a crystal lattice, a leucine zipper-like hydrophobic interface (comprising four leucine residues) was introduced into a helical region (helix 2) of the human pancreatic ribonuclease 1 (RNase 1) that was predicted to form a suitable crystallization interface. Although crystallization of wild-type RNase 1 has not yet been reported, the RNase 1 mutant having four leucines (4L-RNase 1) was successfully crystallized under several different conditions. The crystal structures were subsequently determined by X-ray crystallography by molecular replacement using the structure of bovine RNase A. The overall structure of 4L-RNase 1 is quite similar to that of the bovine RNase A, and the introduced leucine residues formed the designed crystal interface. To characterize the role of the introduced leucine residues in crystallization of RNase 1 further, the number of leucines was reduced to three or two (3L- and 2L-RNase 1, respectively). Both mutants crystallized and a similar hydrophobic interface as in 4L-RNase 1 was observed. A related approach to engineer crystal contacts at helix 3 of RNase 1 (N4L-RNase 1) was also evaluated. N4L-RNase 1 also successfully crystallized and formed the expected hydrophobic packing interface. These results suggest that appropriate introduction of a leucine zipper-like hydrophobic interface can promote intermolecular symmetry for more efficient protein crystallization in crystal lattice engineering efforts.  相似文献   
126.
We present efficient syntheses of serofendic acids A and B (SA-A and SA-B), novel neuroprotective substances isolated from fetal calf serum. Biological and pharmacological evaluation showed that SA-A and SA-B have potent protective action against glutamate-induced neurotoxicity, but do not interact directly with glutamate receptors. A pharmacokinetic study showed that they have good oral bioavailability in rats. The results indicate that SA-A and SA-B are potential lead compounds for candidate drugs to treat various neurological disorders.  相似文献   
127.
In the present study, we compared the estrogenic activity of zearalenone (ZEN) and zeranol (ZOL) by determining their relative receptor binding affinities for human ERalpha and ERbeta and also by determining their uterotropic activity in ovariectomized female mice. ZOL displayed a much higher binding affinity for human ERalpha and ERbeta than ZEN did. The IC(50) values of ZEN and ZOL for binding to human ERalpha were 240.4 and 21.79nM, respectively, and the IC(50) values for binding to ERbeta were 165.7 and 42.76nM, respectively. In ovariectomized female ICR mice, s.c. administration of ZEN at doses >or=2mg/kg/day for 3 consecutive days significantly increased uterine wet weight compared with the control group, and administration of ZOL increased the uterine wet weight at lower doses (>or=0.5mg/kg/day for 3 days). Based on available X-ray crystal structures of human ERalpha and ERbeta, we have also conducted molecular modeling studies to probe the binding characteristics of ZEN and ZOL for human ERalpha and ERbeta. Our data revealed that ZEN and ZOL were able to occupy the active site of the human ERalpha and ERbeta in a strikingly similar manner as 17beta-estradiol, such that the phenolic rings of ZEN and ZOL occupied the same receptor region as occupied by the A-ring of 17beta-estradiol. The primary reason that ZOL and ZEN is less potent than 17beta-estradiol is likely because 17beta-estradiol could bind to the receptor pocket without significantly changing its conformation, while ZOL or ZEN would require considerable conformational alterations upon binding to the estrogen receptors (ERs).  相似文献   
128.
129.
Both farnesyl diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) are key enzymes in the synthesis of various isoprenoid-containing compounds and proteins. Here, we describe two novel Schizosaccharomyces pombe genes, fps1(+) and spo9(+), whose products are similar to FPS in primary structure, but whose functions differ from one another. Fps1 is essential for vegetative growth, whereas, a spo9 null mutant exhibits temperature-sensitive growth. Expression of fps1(+), but not spo9(+), suppresses the lethality of a Saccharomyces cerevisiae FPS-deficient mutant and also restores ubiquinone synthesis in an Escherichia coli ispA mutant, which lacks FPS activity, indicating that S. pombe Fps1 in fact functions as an FPS. In contrast to a typical FPS gene, no apparent GGPS homologues have been found in the S. pombe genome. Interestingly, although neither fps1(+) nor spo9(+) expression alone in E. coli confers clear GGPS activity, coexpression of both genes induces such activity. Moreover, the GGPS activity is significantly reduced in the spo9 mutant. In addition, the spo9 mutation perturbs the membrane association of a geranylgeranylated protein, but not that of a farnesylated protein. Yeast two-hybrid and coimmunoprecipitation analyses indicate that Fps1 and Spo9 physically interact. Thus, neither Fps1 nor Spo9 alone functions as a GGPS, but the two proteins together form a complex with GGPS activity. Because spo9 was originally identified as a sporulation-deficient mutant, we show here that expansion of the forespore membrane is severely inhibited in spo9Delta cells. Electron microscopy revealed significant accumulation membrane vesicles in spo9Delta cells. We suggest that lack of GGPS activity in a spo9 mutant results in impaired protein prenylation in certain proteins responsible for secretory function, thereby inhibiting forespore membrane formation.  相似文献   
130.
What is it that defines a bone marrow‐derived chondrocyte? We attempted to identify marrow‐derived cells with chondrogenic nature and immortality without transformation, defining “immortality” simply as indefinite cell division. KUM5 mesenchymal cells, a marrow stromal cell line, generated hyaline cartilage in vivo and exhibited enchondral ossification at a later stage after implantation. Selection of KUM5 chondroblasts based on the activity of the chondrocyte‐specific cis‐regulatory element of the collagen α2(XI) gene resulted in enhancement of their chondrogenic nature. Gene chip analysis revealed that OP9 cells, another marrow stromal cell line, derived from macrophage colony‐stimulating factor‐deficient osteopetrotic mice and also known to be niche‐constituting cells for hematopoietic stem cells expressed chondrocyte‐specific or ‐associated genes such as type II collagen α1, Sox9, and cartilage oligomeric matrix protein at an extremely high level, as did KUM5 cells. After cultured OP9 micromasses exposed to TGF‐β3 and BMP2 were implanted in mice, they produced abundant metachromatic matrix with the toluidine blue stain and formed type II collagen‐positive hyaline cartilage within 2 weeks in vivo. Hierarchical clustering and principal component analysis based on microarray data of the expression of cell surface markers and cell‐type‐specific genes resulted in grouping of KUM5 and OP9 cells into the same subcategory of “chondroblast,” that is, a distinct cell type group. We here show that these two cell lines exhibit the unique characteristics of hyaline cartilage formation and enchondral ossification in vitro and in vivo. J. Cell. Biochem. 100: 1240–1254, 2007. © 2006 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号