首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1743篇
  免费   82篇
  1825篇
  2022年   12篇
  2021年   16篇
  2020年   13篇
  2019年   15篇
  2018年   16篇
  2017年   15篇
  2016年   31篇
  2015年   62篇
  2014年   55篇
  2013年   110篇
  2012年   108篇
  2011年   88篇
  2010年   67篇
  2009年   45篇
  2008年   102篇
  2007年   89篇
  2006年   84篇
  2005年   95篇
  2004年   74篇
  2003年   80篇
  2002年   91篇
  2001年   37篇
  2000年   28篇
  1999年   36篇
  1998年   20篇
  1997年   16篇
  1996年   14篇
  1995年   12篇
  1993年   10篇
  1992年   37篇
  1991年   20篇
  1990年   27篇
  1989年   24篇
  1988年   27篇
  1987年   26篇
  1986年   13篇
  1985年   20篇
  1984年   11篇
  1983年   12篇
  1982年   10篇
  1981年   13篇
  1980年   12篇
  1979年   12篇
  1977年   13篇
  1976年   10篇
  1974年   10篇
  1973年   13篇
  1972年   10篇
  1970年   10篇
  1967年   12篇
排序方式: 共有1825条查询结果,搜索用时 31 毫秒
21.
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), the principal enzymes responsible for oxidative metabolism of ethanol, exist in multiple, genetically determined molecular forms. Widely different kinetic properties in some of these isozymes account for the individual differences in alcohol sensitivity. In this study we used the polymerase chain reaction/restriction fragment length polymorphism method to determine the genotypes of the ADH2 and ALDH2 loci of alcoholic and nonalcoholic Chinese living in Shanghai. We also investigated the subjects' drinking patterns by means of semistructured interviews. The alcoholics had significantly lower frequencies of the ADH22 and ALDH22 alleles than did the nonalcoholics, suggesting the inhibitory effects of these alleles for the development of alcoholism. In the nonalcoholic subjects, ADH22 had little, if any, effect, despite the significant effect of the ALDH22 allele in decreasing the alcohol consumption of the individual. Taken together, these results fit the proposed hypothesis for the development of alcoholism, i.e., drinking behavior is greatly influenced by the individual's gentoypes of alcohol-metabolizing enzymes, and the risk of becoming alcoholic is proportionate with the ethanol consumption of the individual.  相似文献   
22.
A protein crystal lattice consists of surface contact regions, where the interactions of specific groups play a key role in stabilizing the regular arrangement of the protein molecules. In an attempt to control protein incorporation in a crystal lattice, a leucine zipper-like hydrophobic interface (comprising four leucine residues) was introduced into a helical region (helix 2) of the human pancreatic ribonuclease 1 (RNase 1) that was predicted to form a suitable crystallization interface. Although crystallization of wild-type RNase 1 has not yet been reported, the RNase 1 mutant having four leucines (4L-RNase 1) was successfully crystallized under several different conditions. The crystal structures were subsequently determined by X-ray crystallography by molecular replacement using the structure of bovine RNase A. The overall structure of 4L-RNase 1 is quite similar to that of the bovine RNase A, and the introduced leucine residues formed the designed crystal interface. To characterize the role of the introduced leucine residues in crystallization of RNase 1 further, the number of leucines was reduced to three or two (3L- and 2L-RNase 1, respectively). Both mutants crystallized and a similar hydrophobic interface as in 4L-RNase 1 was observed. A related approach to engineer crystal contacts at helix 3 of RNase 1 (N4L-RNase 1) was also evaluated. N4L-RNase 1 also successfully crystallized and formed the expected hydrophobic packing interface. These results suggest that appropriate introduction of a leucine zipper-like hydrophobic interface can promote intermolecular symmetry for more efficient protein crystallization in crystal lattice engineering efforts.  相似文献   
23.
Potent estrogen receptor ligands typically contain a phenolic hydrogen-bond donor. The indazole of the selective estrogen receptor degrader (SERD) ARN-810 is believed to mimic this. Disclosed herein is the discovery of ARN-810 analogs which lack this hydrogen-bond donor. These SERDs induced tumor regression in a tamoxifen-resistant breast cancer xenograft, demonstrating that the indazole NH is not necessary for robust ER-modulation and anti-tumor activity.  相似文献   
24.
Induced pluripotent stem cell (iPSC) technology offers a novel approach for conversion of human primary fibroblasts into melanocytes. During attempts to explore various protocols for differentiation of iPSCs into melanocytes, we found a distinct and self‐renewing cell lineage that could differentiate into melanocytes, named as melanocyte precursor cells (MPCs). The MPCs exhibited a morphology distinctive from that of melanocytes, in lacking either the melanosomal structure or the melanocyte‐specific marker genes MITF, TYR, and SOX10. In addition, gene expression studies in the MPCs showed high‐level expression of WNT5A, ROR2, which are non‐canonical WNT pathway markers, and its related receptor TGFβR2. In contrast, MPC differentiation into melanocytes was achieved by activating the canonical WNT pathway using the GSK3β inhibitor. Our data demonstrated the distinct characteristic of MPCs' ability to differentiate into melanocytes, and the underlying mechanism of interfacing between canonical WNT signaling pathway and non‐canonical WNT signaling pathway.  相似文献   
25.
We previously showed that L-lysine (Lys) and a metabolite of Lys, L-saccharopine, suppressed autophagic proteolysis in C2C12 myotubes. However, the effects of other metabolites of Lys on protein turnover were unknown. We here investigated the effect of the Lys metabolites, L-2-aminoadipic acid (2-AA) and L-pipecolic acid (Pip), on protein turnover in C2C12 myotubes. 2-AA suppressed myofibrillar protein degradation evaluated by the 3-methylhistidine and autophagy activity evaluated by light chain 3-II at lower concentration (100 μM) than did Lys. On the other hand, Pip stimulated the mammalian target of rapamycin signaling activity. Additionally, 100 μM Pip significantly increased the rates of protein synthesis whereas 100 μM Lys had no effect. These results indicate that in C2C12 myotubes, 2-AA could suppress autophagy and Pip could stimulate the rates of protein synthesis, and these metabolites may contribute to exert effect of Lys on protein turnover.  相似文献   
26.
The enzymological, physical, and immunological properties of soluble and bound forms of intracellular acid carboxypeptidase isolated from fresh mycelia ofAspergillus saitoi are reported. In the broken mycelia, about 60% of the total activity was found in the 2,000×g precipitate, with most of the remainder in the 100,000×g supernantant. The highly purified enzymes, Ia and Ib, from the 100,000×g supernatant were found to be homogeneous by such criteria as disc gel electrophoresis at pH 9.4 The bound enzyme, II, was solubilized from the 2,000×g precipitate by self-digestion at pH 6.4 and was highly purified by chromotography. The two forms of intracellular enzymes, the soluble enzymes (Ia and Ib) from the 100,00×g supernatant and the solubilized enzyme (II) from the 2,000×g precipitate, were closely related to, but not completely identical with, the extracellular acid carboxypeptidase.  相似文献   
27.
Recent breakthroughs and technological improvements are rapidly generating evidence supporting the “swinging lever arm model” for force production by myosin. Unlike previous models, this model posits that the globular domain of the myosin motor binds to actin with a constant orientation during force generation. Movement of the neck domain of the motor is hypothesized to occur relative to the globular domain much like a lever arm. This intramolecular conformational change drives the movement of the bound actin. The swinging lever arm model is supported by or consistent with a large number of experimental data obtained with skeletal muscle or slime mold myosins, all of which move actin filaments at rates between 1 and 10 μm/sin vitro. Recently myosin was purified, fromChara internodal cells.In vitro the purifiedChara myosin moves actin filaments at rates one order of magnitude faster than the “fast” skeletal muscle myosin. While this ultra fast movement is not necessarily inconsistent with the swinging lever arm model, one or more specific facets of the motor must be altered in theChara motor in order to accommodate such rapid movement. These characteristics are experimentally testable, thus the ultra fast movement byChara myosin represents a powerful and compelling test of the swinging lever arm model.  相似文献   
28.
Endothelin-1 (Edn1), originally identified as a vasoconstrictor peptide, is involved in the development of cranial/cardiac neural crest-derived tissues and organs. In craniofacial development, Edn1 binds to Endothelin type-A receptor (Ednra) to induce homeobox genes Dlx5/Dlx6 and determines the mandibular identity in the first pharyngeal arch. However, it remains unsolved whether this pathway is also critical for pharyngeal arch artery development to form thoracic arteries. Here, we show that the Edn1/Ednra signaling is involved in pharyngeal artery development by controlling the fate of neural crest cells through a Dlx5/Dlx6-independent mechanism. Edn1 and Ednra knock-out mice demonstrate abnormalities in pharyngeal arch artery patterning, which include persistent first and second pharyngeal arteries, resulting in additional branches from common carotid arteries. Neural crest cell labeling with Wnt1-Cre transgene and immunostaining for smooth muscle cell markers revealed that neural crest cells abnormally differentiate into smooth muscle cells at the first and second pharyngeal arteries of Ednra knock-out embryos. By contrast, Dlx5/Dlx6 knockout little affect the development of pharyngeal arch arteries and coronary arteries, the latter of which is also contributed by neural crest cells through an Edn-dependent mechanism. These findings indicate that the Edn1/Ednra signaling regulates neural crest differentiation to ensure the proper patterning of pharyngeal arch arteries, which is independent of the regional identification of the pharyngeal arches along the dorsoventral axis mediated by Dlx5/Dlx6.  相似文献   
29.
Pseudomonas fluorescens E118 was isolated from soil as an effective eugenol-degrading organism by a screening using eugenol as enrichment substrate. The first enzyme involved in the degradation of eugenol in this organism, eugenol dehydrogenase, was purified after induction by eugenol, and the purity of the enzyme was shown by SDS-PAGE and gel-permeation HLPC. The enzyme is a heterodimer that consists of a 10-kDa cytochrome c and a 58-kDa subunit. The larger subunit presumably contains flavin, suggesting a flavocytochrome c structure and an electron transfer via flavin and cytochrome c during dehydrogenation. The activity of the purified enzyme depended on the addition of a final electron acceptor such as phenazine methosulfate, 2,6-dichlorophenol-indophenol, cytochrome c, or potassium ferricyanide. The enzyme catalyzed the dehydrogenation of three different 4-hydroxybenzylic structures including the conversion of eugenol to coniferyl alcohol, 4-alkylphenols to 1-(4-hydroxyphenyl)alcohols, and 4-hydroxybenzylalcohols to the corresponding aldehydes. The catalytic and structural similarity between this enzyme and a Penicillium vanillyl-alcohol oxidase and 4-alkylphenol methylhydroxylases from several Pseudomonas species is discussed. Received: 17 June 1998 / Accepted: 12 October 1998  相似文献   
30.
Injured motor neurons of the adult rat can survive, whereas similar axotomy causes gradual motor neuron death in the adult mouse. We report that the decreased expression of the neuronal glutamate transporter excitatory amino-acid carrier 1 (EAAC1) following nerve injury is associated with motor neuron death in the mouse. Glutamate transporters play a crucial role in prevention of neuronal death by suppressing glutamate toxicity. However, the possible functional role of EAAC1 in preventing neuron death has not been resolved as compared with glial glutamate transporters such as GLT-1. Here, we have revealed a unique 'rescue' function of EAAC1, which is independent of removal of extracellular glutamate. During apoptotic stimuli, a mitochondrial protein, holocytochrome c synthetase (HCCS), translocates to outside the mitochondria, binds to and suppresses the X-linked inhibitor of apoptosis protein (XIAP), leading to activation of caspase-3. The N-terminus of EAAC1 can bind to HCCS, which interferes with the HCCS-XIAP association, and thereby maintain XIAP activity. This unique anti-apoptotic mechanism of EAAC1 functions in rescuing PC12 cells and motor neurons from NGF deprivation and nerve injury, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号