首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1158篇
  免费   59篇
  1217篇
  2023年   5篇
  2022年   12篇
  2021年   26篇
  2020年   15篇
  2019年   21篇
  2018年   23篇
  2017年   32篇
  2016年   34篇
  2015年   47篇
  2014年   55篇
  2013年   72篇
  2012年   92篇
  2011年   91篇
  2010年   60篇
  2009年   60篇
  2008年   70篇
  2007年   72篇
  2006年   72篇
  2005年   46篇
  2004年   59篇
  2003年   49篇
  2002年   50篇
  2001年   8篇
  2000年   10篇
  1999年   12篇
  1998年   7篇
  1997年   9篇
  1996年   12篇
  1995年   7篇
  1994年   10篇
  1993年   7篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1979年   8篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   3篇
  1971年   3篇
排序方式: 共有1217条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein found in dental and skeletal tissues. Although information regarding the role of MEPE in bone and disorders of phosphate metabolism is emerging, the role of MEPE in dental tissues remains unclear. We performed RNA in situ hybridization and immunohistochemistry analyses to delineate the expression pattern of MEPE during embryonic and postnatal development in craniofacial mineralizing tissues. Mepe RNA expression was seen within teeth from cap through root formation in association with odontoblasts and cellular cementoblasts. More intense expression was seen in the alveolar bone within the osteoblasts and osteocytes. MEPE immunohistochemistry showed biphasic dentin staining in incisors and more intense staining in alveolar bone matrix and in forming cartilage. Analysis of Mepe null mouse molars showed overall mineralized tooth volume and density of enamel and dentin comparable with that of wild-type samples. However, Mepe-/- molars exhibited increased thickness of predentin, dentin, and enamel over controls and decreased gene expression of Enam, Bsp, Dmp1, Dspp, and Opn by RT-PCR. In vitro Mepe overexpression in odontoblasts led to significant reductions in Dspp reporter activity. These data suggest MEPE may be instrumental in craniofacial and dental matrix maturation, potentially functioning in the maintenance of non-mineralized matrix.  相似文献   
75.
Somatopause refers to the gradual declines in growth hormone (GH) and insulin‐like growth factor‐1 throughout aging. To define how induced somatopause affects skeletal integrity, we used an inducible GH receptor knockout (iGHRKO) mouse model. Somatopause, induced globally at 6 months of age, resulted in significantly more slender bones in both male and female iGHRKO mice. In males, induced somatopause was associated with progressive expansion of the marrow cavity leading to significant thinning of the cortices, which compromised bone strength. We report progressive declines in osteocyte lacunar number, and increases in lacunar volume, in iGHRKO males, and reductions in lacunar number accompanied by ~20% loss of overall canalicular connectivity in iGHRKO females by 30 months of age. Induced somatopause did not affect mineral/matrix ratio assessed by Raman microspectroscopy. We found significant increases in bone marrow adiposity and high levels of sclerostin, a negative regulator of bone formation in iGHRKO mice. Surprisingly, however, despite compromised bone morphology, osteocyte senescence was reduced in the iGHRKO mice. In this study, we avoided the confounded effects of constitutive deficiency in the GH/IGF‐1 axis on the skeleton during growth, and specifically dissected its effects on the aging skeleton. We show here, for the first time, that induced somatopause compromises bone morphology and the bone marrow environment.  相似文献   
76.
Under the hypotheses of a structurally related binding site for antagonists of G‐protein coupled receptors and the ability of cyclic pentapeptides of chiral sequence D 1L 2D 3D 4L 5 to form rigid structures with which probe the pharmacophoric specificity of these receptors, inhibitors of substance P were designed based on available structure–activity relationships. ITF 1565, cyclo[D ‐Trp1‐Pro2‐D ‐Lys3‐D ‐Trp4‐Phe5], antagonized substance P activity mediated by type 1 neurokinin receptor (NK1) whereas it acted weakly against NK2 and did not inhibit endothelin at all. The preferential conformation of the peptide was obtained from nmr spectroscopy and computer calculations, and shown to contain the same βII‐turn and γ′‐turn found in other cyclic pentapeptides with the same chiral sequence. The structure of the peptide was compared with that of the β‐D ‐glucose molecule that has been proposed as a semirigid scaffold for antagonists of G‐protein coupled receptors. The γ′‐turn of the cyclic peptide superimposed well with β‐D ‐glucose in the chair conformation. Furthermore, when the side chains were considered, the aromatic groups of the two molecules were found to generally overlap. These results support the view of G‐protein coupled receptors as possessing structurally similar binding sites for antagonists and suggest that cyclic pentapeptides of chiral sequence D 1L 2D 3D 4L 5 may be useful as semirigid scaffolds for the design of antagonists of this family of receptors. © 1999 John Wiley & Sons, Inc. Biopoly 50: 211–219, 1999  相似文献   
77.
Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; however, the genetic aetiology of the disease is not yet fully understood. A quantitative expression profile analysis of 157 mature miRNAs was performed on 100 AML patients representing the spectrum of known karyotypes common in AML. The principle observation reported here is that AMLs bearing a t(15;17) translocation had a distinctive signature throughout the whole set of genes, including the up regulation of a subset of miRNAs located in the human 14q32 imprinted domain. The set included miR-127, miR-154, miR-154*, miR-299, miR-323, miR-368, and miR-370. Furthermore, specific subsets of miRNAs were identified that provided molecular signatures characteristic of the major translocation-mediated gene fusion events in AML. Analysis of variance showed the significant deregulation of 33 miRNAs across the leukaemic set with respect to bone marrow from healthy donors. Fluorescent in situ hybridisation analysis using miRNA-specific locked nucleic acid (LNA) probes on cryopreserved patient cells confirmed the results obtained by real-time PCR. This study, conducted on about a fifth of the miRNAs currently reported in the Sanger database (microrna.sanger.ac.uk), demonstrates the potential for using miRNA expression to sub-classify cancer and suggests a role in the aetiology of leukaemia.  相似文献   
78.
Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.  相似文献   
79.
80.

Background

While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP).

Methods/Principal Findings

Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIβ of protein kinase A (PKA). Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named “cAMP sponge”) was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets.

Conclusions

This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号