首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   42篇
  国内免费   2篇
  2024年   1篇
  2023年   10篇
  2022年   18篇
  2021年   44篇
  2020年   17篇
  2019年   21篇
  2018年   20篇
  2017年   18篇
  2016年   40篇
  2015年   27篇
  2014年   43篇
  2013年   50篇
  2012年   44篇
  2011年   44篇
  2010年   22篇
  2009年   19篇
  2008年   31篇
  2007年   29篇
  2006年   25篇
  2005年   30篇
  2004年   26篇
  2003年   18篇
  2002年   21篇
  2001年   2篇
  2000年   7篇
  1999年   5篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1979年   1篇
  1977年   2篇
  1973年   2篇
  1972年   2篇
  1907年   1篇
排序方式: 共有674条查询结果,搜索用时 15 毫秒
131.
Necrosis is an ancient topic which gains new attraction in the research area these years. There is no doubt that some necrosis can be regulated by genetic manipulation other than an accidental cell death resulting from physical or chemical stimuli. Recent advances in the molecular mechanism underlying the programmed necrosis show a fine regulation network which indicates new therapy targets in human diseases. Heart diseases seriously endanger our health and have high fatality rates in the patients. Cell death of cardiac myocytes is believed to be critical in the pathogenesis of heart diseases. Although necrosis is likely to play a more important role in cardiac cell death than apoptosis, apoptosis has been paid much attention in the past 30 years because it used to be considered as the only form of programmed cell death. However, recent findings of programmed necrosis and the related signalling pathways have broadened our horizon in the field of programmed cell death and promote new pharmacological application in the treatment of heart diseases. In this review, we summarize the advanced progress in these signalling pathways and discuss the pathos‐physiological relevance and therapeutic implication of targeting necrosis in heart diseases treatment.  相似文献   
132.
It is indispensable to comprehend the mechanism that regulates plant responses to drought conditions to intensify the water use efficiency of stone fruits. The physiological, biochemical and molecular responses of drought-treated peach leaves were investigated. Results revealed that drought-treated plants manifested a significant attenuation in water potential as compared to control plants. Furthermore, sorbitol and proline contents were accumulated contrary to glucose, fructose, and sucrose that were dwindled significantly throughout the drought period. Similarly, the activities of antioxidant enzymes and expression pattern of related genes were hoisted to counter the lipid peroxidation in drought-treated plants. Moreover, reduced stomatal conductance has repressed the photosynthesis process and linked genes during drought stress. The expression level of regulatory genes (dehydration-responsive element-bindings and WRKYs) exhibited up-regulation in the drought-treated group. Overall, this study asserts that ‘Yoshihime’ peach cultivar possesses unique physiological, biochemical, and molecular responses under different spells of drought stress.  相似文献   
133.
Hematopoietic stem cells (HSCs) are capable of giving rise to all blood cell lineages throughout adulthood, and the generation of engraftable HSCs from human pluripotent stem cells is a major goal for regenerative medicine. Here, we describe a functional genome‐wide RNAi screen to identify genes required for the differentiation of embryonic stem cell (ESC) into hematopoietic stem/progenitor cells (HSPCs) in vitro. We report the discovery of novel genes important for the endothelial‐to‐hematopoietic transition and subsequently for HSPC specification. High‐throughput sequencing and bioinformatic analyses identified twelve groups of genes, including a set of 351 novel genes required for HSPC specification. As in vivo proof of concept, four of these genes, Ap2a1, Mettl22, Lrsam1, and Hal, are selected for validation, confirmed to be essential for HSPC development in zebrafish and for maintenance of human HSCs. Taken together, our results not only identify a number of novel regulatory genes and pathways essential for HSPC development but also serve as valuable resource for directed differentiation of therapy grade HSPCs using human pluripotent stem cells.  相似文献   
134.
Hutchinson–Gilford progeria syndrome (HGPS), a fatal premature aging disease, is caused by a single‐nucleotide mutation in the LMNA gene. Previous reports have focused on nuclear phenotypes in HGPS cells, yet the potential contribution of the mitochondria, a key player in normal aging, remains unclear. Using high‐resolution microscopy analysis, we demonstrated a significantly increased fraction of swollen and fragmented mitochondria and a marked reduction in mitochondrial mobility in HGPS fibroblast cells. Notably, the expression of PGC‐1α, a central regulator of mitochondrial biogenesis, was inhibited by progerin. To rescue mitochondrial defects, we treated HGPS cells with a mitochondrial‐targeting antioxidant methylene blue (MB). Our analysis indicated that MB treatment not only alleviated the mitochondrial defects but also rescued the hallmark nuclear abnormalities in HGPS cells. Additional analysis suggested that MB treatment released progerin from the nuclear membrane, rescued perinuclear heterochromatin loss and corrected misregulated gene expression in HGPS cells. Together, these results demonstrate a role of mitochondrial dysfunction in developing the premature aging phenotypes in HGPS cells and suggest MB as a promising therapeutic approach for HGPS.  相似文献   
135.
Abstract

Context: Dyslipidemia is a major risk factor for the development of cardiovascular diseases. Many dyslipidemic patients do not achieve their target lipid levels with the currently available medications, and most of them may experience many side effects.

Objective: The present work aimed toward identifying a new class of novel nicotinic acid-carboxamide derivatives as promising antihyperlipidemic compounds.

Materials and methods: Six novel N-(benzoylphenyl)pyridine-3-carboxamide derivatives were synthesized using acid chloride pathways. All structures were confirmed using 1H-NMR, 13C-NMR, IR, and HRMS. The evaluation of biological activity was conducted using Triton WR-1339-induced hyperlipidemic rats model.

Results: This study revealed that some of the newly synthesized novel N-(benzoylphenyl)pyridine-3-carboxamide derivatives mainly C4 and C6 possessed significant antihyperlipidemic activities on lipid components TG and TC (p value?<0.05).

Discussion and conclusion: This research opens the door for new potential antihyperlipidemic compounds derived from nicotinic acid that need further optimization of their biological activities.  相似文献   
136.

Background

Fifty random genetically unstudied families (limb-girdle muscular dystrophy (LGMD)/myopathy) were screened with a gene panel incorporating 759 OMIM genes associated with neurological disorders. Average coverage of the CDS and 10 bp flanking regions of genes was 99 %. All families were referred to the Neurosciences Clinic of King Faisal Specialist Hospital and Research Centre, Saudi Arabia. Patients presented with muscle weakness affecting the pelvic and shoulder girdle. Muscle biopsy in all cases showed dystrophic or myopathic changes. Our main objective was to evaluate a neurological gene panel as a first-line diagnostic test for LGMD/myopathies.

Results

Our panel identified the mutation in 76 % of families (38/50; 11 novel). Thirty-four families had mutations in LGMD-related genes with four others having variants not typically associated with LGMD. The majority of cases had recessive inheritance with homoallelic pathogenic variants (97.4 %, 37/38), as expected considering the high rate of consanguinity in the study population. In one case, we detected a heterozygous mutation in DNAJB responsible for LGMD-1E. Our cohort included seven different subtypes of LGMD2. Mutations of DYSF were the most commonly identified cause of disease followed by that in CAPN3 and FKRP. Non-LGMD myopathies were due to mutations in genes associated with congenital disorder of glycosylation (ALG2), rigid spine muscular dystrophy 1 (SEPN1), inclusion body myopathy2/Nonaka myopathy (GNE), and neuropathy (WNK1). Whole exome sequencing (WES) of patients who remained undiagnosed with the neurological panel did not improve our diagnostic yield.

Conclusions

Our neurological panel achieved a high clinical sensitivity (76 %) and is an effective first-line laboratory test in patients with LGMD and other myopathies. This sensitive, cost-effective, and rapid assay significantly assists clinical practice especially in these phenotypically and genetically heterogeneous disorders. Moreover, the application of the American College of Medical Genetics (ACMG) and Association for Molecular Pathology (AMP) guidelines applied in the classification of variant pathogenecity provides a clear interpretation for physicians on the relevance of such findings.
  相似文献   
137.
138.
Caralluma tuberculata (C. tuberculata) is a very important medicinal plant with a range of anti-diabetic and weight reduction properties. This high-valued medicinal plant is nowadays considered as endangered due to its unsustainable elimination from wild habitats. There is lack of research efforts on its propagation to overcome escalating demand. In this research study, an effort has been made to optimize protocol for large-scale mass propagation and production of natural antioxidants. Highest callogenic response (87.2 %) was observed from shoot tip explants on Murashige and Skoog (MS) medium containing 30 g l?1 sucrose and combination of 2, 4-D (2.0 mg l?1) and BA (1.0 mg l?1). During shoot morphogenesis, 50 g l?1 sucrose along with BA (2.0 mg l?1) and GA3 (1.0 mg l?1) enhanced shoot regeneration (91.3 %), mean shoot length (2.6 cm) and shoots per explant (24.5) as compared to control. The combination of IBA and IAA (2.0 mg l?1) was found optimum for root induction (74.98 %), mean root length (4.1 cm) and roots per shoot (6.9) as compared to control. The plantlets were successfully acclimatized in plastic cups and various tissues were investigated for accumulation of antioxidant secondary metabolites including phenolics, flavonoids, stress enzymes and antioxidant activities. The superoxide dismutase enzyme was higher in shoots; protein content was higher in callus cultures; phenolics, DPPH and protease activity were higher in plantlets, while flavonoids, peroxidase, reducing power and total antioxidant activities were higher in wild plants. This simple protocol is very useful for commercial production of consistent plantlets and metabolites of interest.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号