首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2018篇
  免费   114篇
  国内免费   8篇
  2140篇
  2024年   3篇
  2023年   31篇
  2022年   68篇
  2021年   97篇
  2020年   72篇
  2019年   94篇
  2018年   83篇
  2017年   68篇
  2016年   104篇
  2015年   108篇
  2014年   129篇
  2013年   173篇
  2012年   132篇
  2011年   152篇
  2010年   84篇
  2009年   77篇
  2008年   78篇
  2007年   71篇
  2006年   62篇
  2005年   65篇
  2004年   62篇
  2003年   40篇
  2002年   42篇
  2001年   4篇
  2000年   16篇
  1999年   12篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   11篇
  1994年   10篇
  1993年   8篇
  1992年   9篇
  1991年   13篇
  1990年   15篇
  1989年   18篇
  1988年   23篇
  1987年   16篇
  1986年   6篇
  1985年   9篇
  1984年   17篇
  1983年   5篇
  1982年   5篇
  1980年   4篇
  1979年   6篇
  1978年   4篇
  1975年   4篇
  1973年   3篇
  1972年   2篇
  1956年   2篇
排序方式: 共有2140条查询结果,搜索用时 0 毫秒
91.
Stem cells are being applied in increasingly diverse fields of research and therapy; as such, growing and culturing them in scalable quantities would be a huge advantage for all concerned. Gas mixtures containing 5 % CO2 are a typical concentration for the in vitro culturing of cells. The effect of varying the CO2 concentration on promyeloblast KG-1a cells was investigated in this paper. KG-1a cells are characterized by high expression of CD34 surface antigen, which is an important clinical surface marker for human hematopoietic stem cells (HSCs) transplantation. KG-1a cells were cultured in three CO2 concentrations (1, 5 and 15 %). Cells were batch-cultured and analyzed daily for viability, size, morphology, proliferation, and apoptosis using flow cytometry. No considerable differences were noted in KG-1a cell morphological properties at all three CO2 levels as they retained their myeloblast appearance. Calculated population doubling time increased with an increase in CO2 concentration. Enhanced cell proliferation was seen in cells cultured in hypercapnic conditions, in contrast to significantly decreased proliferation in hypocapnic populations. Flow cytometry analysis revealed that apoptosis was significantly (p = 0.0032) delayed in hypercapnic cultures, in parallel to accelerated apoptosis in hypocapnic ones. These results, which to the best of our knowledge are novel, suggest that elevated levels of CO2 are favored for the enhanced proliferation of bone marrow (BM) progenitor cells such as HSCs.  相似文献   
92.
The activity of a lipase from a newly isolated Pseudomonas sp. was investigated in the presence of organic solvents and imidazolium chloride‐based ionic liquids (IL) such as BMIM[Cl] and HMIM[Cl]. The lipase activity in the presence of IL was higher compared to that in common organic solvents such as methanol and 2‐propanol. A possible explanation for the enzyme activation might be the structural changes induced in the protein in organic systems. Since IL quench the intensity of fluorescence emission, it was not possible to investigate the major factor that influences the enzyme behavior in these new organic salts. Furthermore, the enzyme exhibited excellent activity in buffer mixtures containing both organic solvent and IL. The stability of the lipase at 50°C was considerably increased in the presence of 20% BMIM[Cl] compared with the untreated lipase in aqueous medium. The light scattering method clearly showed that prevention of aggregation could be the reason for thermal stabilization at 50°C in reactions containing IL. Kinetic analysis of the enzyme in the presence of different concentrations of IL showed that the Km value increased from 0.45 mM in aqueous buffer to 2.4 mM in 50% v/v BMIM[Cl]/buffer. The increase in Km indicates that IL can significantly reduce the binding affinity of the substrate to the enzyme. Also, a linear correlation was observed between the BMIM[Cl] concentration and Vmax of the enzyme. As the concentration of BMIM[Cl] increased from 10 to 50% v/v, the Vmax value increased from 1.8 to 46 μM/min.  相似文献   
93.
Single-cell gel electrophoresis (comet assay) is one of the most common methods used to measure oxidatively damaged DNA in peripheral blood mononuclear cells (PBMC), as a biomarker of oxidative stress in vivo. However, storage, extraction, and assay workup of blood samples are associated with a risk of artifactual formation of damage. Previous reports using this approach to study DNA damage in PBMC have, for the most part, required the isolation of PBMC before immediate analysis or freezing in cryopreservative. This is very time-consuming and a significant drain on human resources. Here, we report the successful storage of whole blood in ~ 250 μl volumes, at − 80 °C, without cryopreservative, for up to 1 month without artifactual formation of DNA damage. Furthermore, this blood is amenable for direct use in both the alkaline and the enzyme-modified comet assay, without the need for prior isolation of PBMC. In contrast, storage of larger volumes (e.g., 5 ml) of whole blood leads to an increase in damage with longer term storage even at − 80 °C, unless a cryopreservative is present. Our “small volume” approach may be suitable for archived blood samples, facilitating analysis of biobanks when prior isolation of PBMC has not been performed.  相似文献   
94.
The oligopeptide permease (Opp) of Escherichia coli is an ATP-binding cassette transporter that uses the substrate-binding protein (SBP) OppA to bind peptides and deliver them to the membrane components (OppBCDF) for transport. OppA binds conventional peptides 2-5 residues in length regardless of their sequence, but does not facilitate transport of the cell wall component murein tripeptide (Mtp, L-Ala-γ-D-Glu-meso-Dap), which contains a D-amino acid and a γ-peptide linkage. Instead, MppA, a homologous substrate-binding protein, forms a functional transporter with OppBCDF for uptake of this unusual tripeptide. Here we have purified MppA and demonstrated biochemically that it binds Mtp with high affinity (K(D) ~ 250 nM). The crystal structure of MppA in complex with Mtp has revealed that Mtp is bound in a relatively extended conformation with its three carboxylates projecting from one side of the molecule and its two amino groups projecting from the opposite face. Specificity for Mtp is conferred by charge-charge and dipole-charge interactions with ionic and polar residues of MppA. Comparison of the structure of MppA-Mtp with structures of conventional tripeptides bound to OppA, reveals that the peptide ligands superimpose remarkably closely given the profound differences in their structures. Strikingly, the effect of the D-stereochemistry, which projects the side chain of the D-Glu residue at position 2 in the direction of the main chain in a conventional tripeptide, is compensated by the formation of a γ-linkage to the amino group of diaminopimelic acid, mimicking the peptide bond between residues 2 and 3 of a conventional tripeptide.  相似文献   
95.
Nano-sized copper particles are widely used in various chemical, physical, and biological fields. However, earlier studies have shown that nano copper particles (40–100 μg/mL) can induce cell toxicity and apoptosis. Therefore, this study was conducted to investigate the role of nano copper in mitochondrion-mediated apoptosis in PK-15 cells. The cells were treated with different doses of nano copper (20, 40, 60, and 80 μg/mL) to determine the effects of apoptosis using acridine orange/ethidium bromide (AO/EB) fluorescence staining and a flow cytometry assay. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the PK-15 cells were examined using commercially available kits. Moreover, the mRNA levels of the Bax, Bid, Caspase-3, and CYCS genes were assessed by real-time PCR. The results revealed that nano copper exposure induced apoptosis and changed the mitochondrial membrane potential. In addition, nano copper significantly altered the levels of the Bax, Bid, Caspase-3, and CYCS genes at a concentration of 40 μg/mL. To summarize, nano copper significantly (P < 0.05) decreased the level of SOD and increased the level of MDA in PK-15 cells. Altogether, these results suggest that nano copper can play an important role in inducing the apoptotic pathway in PK-15 cells, which may be the mechanism by which nano copper induces nephrotoxicity.  相似文献   
96.
97.
Eucalyptus grandis is the most widely planted tree species worldwide and can face severe drought during the initial months after planting because the root system is developing. A complete randomized design was used to study the effects of two water regimes (well‐watered and water‐stressed) and phosphorus (P) applications (with and without P) on the morphological and physio‐biochemical responses of E. grandis. Drought had negative effects on the growth and metabolism of E. grandis, as indicated by changes in morphological traits, decreased net photosynthetic rates (Pn), pigment concentrations, leaf relative water contents (LRWCs), nitrogenous compounds, over‐production of reactive oxygen species (ROS) and higher lipid peroxidation. However, E. grandis showed effective drought tolerance strategies, such as reduced leaf area and transpiration rate (E), higher accumulation of soluble sugars and proline and a strong antioxidative enzyme system. P fertilization had positive effects on well‐watered seedlings due to improved growth and photosynthesis, which indicated the high P requirements during the initial E. grandis growth stage. In drought‐stressed seedlings, P application had no effects on the morphological traits, but it significantly improved the LRWC, Pn, quantum efficiency of photosystem II (Fv/Fm), chlorophyll pigments, nitrogenous compounds and reduced lipid peroxidation. P fertilization improved E. grandis seedling growth under well‐watered conditions but also ameliorated some leaf physiological traits under drought conditions. The effects of P fertilization are mainly due to the enhancement of plant N nutrition. Therefore, P can be used as a fertilizer to improve growth and production in the face of future climate change.  相似文献   
98.
Experimental and clinical studies have confirmed safety and the medical benefits of probiotics as immunomodulatory medications. Recent advances have emphasized the critical effect of gastrointestinal bacteria in the pathology of inflammatory disorders, even, outside the gut. Probiotics have shown promising results for curing skin-influencing inflammatory disorders through modulating the immune response by manipulating the gut microbiome. Psoriasis is a complex inflammatory skin disease, which exhibits a microbiome distinct from the normal skin. In the present review, we considered the impact of gastrointestinal microbiota on the psoriasis pathogenesis, and through literature survey, attempted to explore probiotic species utilized for psoriasis treatment.  相似文献   
99.
International Journal of Peptide Research and Therapeutics - Cancer remains one of the leading causes of death worldwide. Introduction of natural compounds with anticancer properties can be an...  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号