Wnt/β-catenin signaling has come to the forefront of liver biology in recent years. This pathway regulates key pathophysiological events inherent to the liver including development, regeneration and cancer, by dictating several biological processes such as proliferation, apoptosis, differentiation, adhesion, zonation and metabolism in various cells of the liver. This review will examine the studies that have uncovered the relevant roles of Wnt/β-catenin signaling during the process of liver development. We will discuss the potential roles of Wnt/β-catenin signaling during the phases of development, including competence, hepatic induction, expansion and morphogenesis. In addition, we will discuss the role of negative and positive regulation of this pathway and how the temporal expression of Wnt/β-catenin can direct key processes during hepatic development. We will also identify some of the major deficits in the current understanding of the role of Wnt/β-catenin signaling in liver development in order to provide a perspective for future studies. Thus, this review will provide a contextual overview of the role of Wnt/β-catenin signaling during hepatic organogenesis.Key words:
liver development, liver cancer, liver regeneration, Wnt signaling, proliferation, differentiationThe Wnt/β-catenin pathway is an evolutionarily well-conserved pathway that has proven to be essential to normal cellular processes such as development, growth, survival, regeneration and self-renewal.
1–5 Its diverse functions also include the initiation and progression of cancer.
6 In fact, one area in which this pathway has been extensively studied is in liver cancer.Mutations of Wnt/β-catenin pathway members in hepatocarcinogenesis are common. For example, 90–100% of hepatoblastomas contain mutations in adenomatous polyposis coli (APC), CTNNB1 and/or Axin1/2, which causes cytoplasmic and nuclear localization of β-catenin.
7–9 Axin1 and β-catenin mutations have also been identified in approximately 25% of hepatocellular carcinomas,
10–12 while overexpression of the frizzled-7 receptor
13 and glycogen synthase kinase-3 (GSK-3) inactivation
14 can also lead to aberrant β-catenin pathway activation. The dysregulation of this pathway in hepatic cancers makes it an attractive target for potential therapies, and experimental treatment in vivo has shown promising results. For example, inhibiting β-catenin expression by siRNA or R-Etodolac decreases proliferation and survival of human hepatoma cell lines.
15,16 Since cancer recapitulates development, determining the timing of β-catenin activation during hepatogenesis will help us to better understand the inappropriate activation of this pathway in hepatocarcinogenesis.Recent work has elucidated the role of β-catenin signaling in the liver, and has highlighted its essential role in liver health and disease.
17 In addition, emerging evidence suggests that this pathway plays a key role in liver organogenesis.
相似文献