首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58461篇
  免费   4655篇
  国内免费   5024篇
  2024年   156篇
  2023年   751篇
  2022年   1787篇
  2021年   2825篇
  2020年   1963篇
  2019年   2422篇
  2018年   2528篇
  2017年   2045篇
  2016年   2645篇
  2015年   3271篇
  2014年   4016篇
  2013年   4368篇
  2012年   5004篇
  2011年   4649篇
  2010年   3159篇
  2009年   2845篇
  2008年   3199篇
  2007年   2878篇
  2006年   2555篇
  2005年   2101篇
  2004年   1889篇
  2003年   1736篇
  2002年   1441篇
  2001年   1120篇
  2000年   965篇
  1999年   733篇
  1998年   463篇
  1997年   386篇
  1996年   371篇
  1995年   376篇
  1994年   342篇
  1993年   262篇
  1992年   351篇
  1991年   306篇
  1990年   248篇
  1989年   223篇
  1988年   155篇
  1987年   202篇
  1986年   166篇
  1985年   150篇
  1984年   114篇
  1983年   106篇
  1982年   93篇
  1981年   84篇
  1980年   56篇
  1979年   64篇
  1978年   74篇
  1976年   54篇
  1973年   68篇
  1972年   56篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
71.
72.
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.  相似文献   
73.
A comparative analysis of the time and amplitude characteristics of the negative N200 and positive P300 components of visual evoked potentials recorded at symmetric points of the frontal, parietal, temporal, and occipital areas of the right and left hemispheres of the cerebral cortex has been performed in subjects with or without the skill of operating a computer. Subjects inexperienced in an operator’s work exhibited an interhemispheric difference in the time and amplitude characteristics of the studied components. In subjects that had the skill of operating a computer, the interhemispheric difference was little, which suggests that the cortex plays only a small role in the cerebral control of this activity.  相似文献   
74.
We propose a methodology for digitally fusing diagnostic decisions made by multiple medical experts in order to improve accuracy of diagnosis. Toward this goal, we report an experimental study involving nine experts, where each one was given more than 8,000 digital microscopic images of individual human red blood cells and asked to identify malaria infected cells. The results of this experiment reveal that even highly trained medical experts are not always self-consistent in their diagnostic decisions and that there exists a fair level of disagreement among experts, even for binary decisions (i.e., infected vs. uninfected). To tackle this general medical diagnosis problem, we propose a probabilistic algorithm to fuse the decisions made by trained medical experts to robustly achieve higher levels of accuracy when compared to individual experts making such decisions. By modelling the decisions of experts as a three component mixture model and solving for the underlying parameters using the Expectation Maximisation algorithm, we demonstrate the efficacy of our approach which significantly improves the overall diagnostic accuracy of malaria infected cells. Additionally, we present a mathematical framework for performing ‘slide-level’ diagnosis by using individual ‘cell-level’ diagnosis data, shedding more light on the statistical rules that should govern the routine practice in examination of e.g., thin blood smear samples. This framework could be generalized for various other tele-pathology needs, and can be used by trained experts within an efficient tele-medicine platform.  相似文献   
75.
76.
The effect of a two-vessel forebrain ischemia (induced by occlusion of carotid arteries and hypotension), subsequent reperfusion, and administration of indomethacin and quinacrine on the Na+,K+-ATPase activity and diene conjugate content was studied in various rat forebrain fields. The most pronounced metabolic alterations were observed during ischemia and reperfusion. Under these effects, there was a statistically significant reduction of the Na+,K+-ATPase activity in the brain cortex and striatum and an increase of the diene conjugate content in the rat brain cortex in comparison with sham-operated animals. Injection of indomethacin, a cyclooxygenase inhibitor, to rats subjected to ischemia and reperfusion, resulted to a statistically significant increase of the Na+,K+-ATPase activity in the brain cortex, hippocampus, and striatum (p < 0.02) as compared with control animals. The diene conjugate content in the rat brain cortex during brain ischemia and reperfusion was statistically significantly lower in the rats injected with indomethacin. The effect of quinacrine (a blocker of phospholipase A2) was similar to that of indomethacin in the rat cortex, whereas in the rat striatum and hippocampus, the quinacrine effect during ischemia and reperfusion was less marked than that of indomethacin. The obtained data indicate the ability of inhibitors of the arachidonic pathway of free radical formation to normalize the Na+, K+-ATPase activity during brain ischemia. There also revealed local peculiarities of metabolic disturbances in different regions of the rat forebrain during ischemia and reperfusion.Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 1, 2005, pp. 33–38.Original Russian Text Copyright © 2005 by Molchanova, Moskvin, Zakharova, Yurlova, Nosova, Avrova.  相似文献   
77.
78.
79.
80.
Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号