首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20147篇
  免费   1746篇
  国内免费   2412篇
  2024年   50篇
  2023年   279篇
  2022年   681篇
  2021年   1160篇
  2020年   801篇
  2019年   974篇
  2018年   938篇
  2017年   656篇
  2016年   943篇
  2015年   1424篇
  2014年   1575篇
  2013年   1748篇
  2012年   2032篇
  2011年   1785篇
  2010年   1011篇
  2009年   1010篇
  2008年   1055篇
  2007年   939篇
  2006年   873篇
  2005年   675篇
  2004年   561篇
  2003年   447篇
  2002年   367篇
  2001年   261篇
  2000年   248篇
  1999年   226篇
  1998年   181篇
  1997年   161篇
  1996年   150篇
  1995年   129篇
  1994年   116篇
  1993年   82篇
  1992年   142篇
  1991年   96篇
  1990年   73篇
  1989年   67篇
  1988年   49篇
  1987年   53篇
  1986年   46篇
  1985年   46篇
  1984年   24篇
  1983年   19篇
  1982年   22篇
  1981年   11篇
  1979年   11篇
  1978年   12篇
  1973年   10篇
  1971年   10篇
  1970年   9篇
  1968年   9篇
排序方式: 共有10000条查询结果,搜索用时 85 毫秒
821.
Tao  Z. H.  Dong  H. M.  Duan  Y. F.  Huang  F.  Liu  J. L. 《Plasmonics (Norwell, Mass.)》2019,14(4):839-843
Plasmonics - We investigate on the terahertz (THz) plasmons of hole gas in monolayer MoS2 in the presence of spin-orbit interactions (SOIs) under the random phase approximation. The study shows...  相似文献   
822.
Metallic sodium is receiving renewed interest as a battery anode material because the metal is earth‐abundant, inexpensive, and offers a high specific storage capacity (1166 mAh g?1 at ?2.71 V vs the standard hydrogen potential). Unlike metallic lithium, the case for Na as the anode in rechargeable batteries has already been demonstrated on a commercial scale in high‐temperature Na||S and Na||NiCl2 secondary batteries, which increases interest. The reversibility of room temperature sodium anodes is investigated in galvanostatic plating/stripping reactions using in situ optical visualization and galvanostatic polarization measurements. It is discovered that electronic disconnection of mossy metallic Na deposits (“orphaning”) is a dominant source of anode irreversibility in liquid electrolytes. The disconnection is shown by means of direct visualization studies to be triggered by a root‐breakage process during the stripping cycle. As a further step toward electrode designs that are able to accommodate the fragile Na deposits, electrodeposition of Na is demonstrated in nonplanar electrode architectures, which provide continuous and morphology agnostic access to the metal at all stages of electrochemical cycling. On this basis, nonplanar Na electrodes are reported, which exhibit exceptionally high levels of reversibility (Coulombic efficiency >99.6% for 1 mAh cm?2 Na throughput) in room‐temperature, liquid electrolytes.  相似文献   
823.
Due to unprecedented features including high‐energy density, low cost, and light weight, lithium–sulfur batteries have been proposed as a promising successor of lithium‐ion batteries. However, unresolved detrimental low Li‐ion transport rates in traditional carbon materials lead to large energy barrier in high sulfur loading batteries, which prevents the lithium–sulfur batteries from commercialization. In this report, to overcome the challenge of increasing both the cycling stability and areal capacity, a metallic oxide composite (NiCo2O4@rGO) is designed to enable a robust separator with low energy barrier for Li‐ion diffusion and simultaneously provide abundant active sites for the catalytic conversion of the polar polysulfides. With a high sulfur‐loading of 6 mg cm?2 and low sulfur/electrolyte ratio of 10, the assembled batteries deliver an initial capacity of 5.04 mAh cm?2 as well as capacity retention of 92% after 400 cycles. The metallic oxide composite NiCo2O4@rGO/PP separator with low Li‐ion diffusion energy barrier opens up the opportunity for lithium–sulfur batteries to achieve long‐cycle, cost‐effective operation toward wide applications in electric vehicles and electronic devices.  相似文献   
824.
Sodium ion batteries are now attracting great attention, mainly because of the abundance of sodium resources and their cheap raw materials. 2D materials possess a unique structure for sodium storage. Among them, transition metal chalcogenides exhibit significant potential for rechargeable battery devices due to their tunable composition, remarkable structural stability, fast ion transport, and robust kinetics. Herein, ultrathin TiS2 nanosheets are synthesized by a shear‐mixing method and exhibit outstanding cycling performance (386 mAh g?1 after 200 cycles at 0.2 A g?1). To clarify the variations of galvanostatic curves and superior cycling performance, the mechanism and morphology changes are systematically investigated. This facile synthesis method is expected to shed light on the preparation of ultrathin 2D materials, whose unique morphologies could easily enable their application in rechargeable batteries.  相似文献   
825.
Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm?2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm?2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current.  相似文献   
826.
Rechargeable aqueous batteries with Zn2+ as a working‐ion are promising candidates for grid‐scale energy storage because of their intrinsic safety, low‐cost, and high energy‐intensity. However, suitable cathode materials with excellent Zn2+‐storage cyclability must be found in order for Zinc‐ion batteries (ZIBs) to find practical applications. Herein, NaCa0.6V6O16·3H2O (NaCaVO) barnesite nanobelts are reported as an ultra‐stable ZIB cathode material. The original capacity reaches 347 mAh g?1 at 0.1 A g?1, and the capacity retention rate is 94% after 2000 cycles at 2 A g?1 and 83% after 10 000 cycles at 5 A g?1, respectively. Through a combined theoretical and experimental approach, it is discovered that the unique V3O8 layered structure in NaCaVO is energetically favorable for Zn2+ diffusion and the structural water situated between V3O8 layers promotes a fast charge‐transfer and bulk migration of Zn2+ by enlarging gallery spacing and providing more Zn‐ion storage sites. It is also found that Na+ and Ca2+ alternately suited in V3O8 layers are the essential stabilizers for the layered structure, which play a crucial role in retaining long‐term cycling stability.  相似文献   
827.
Transition metal layered oxides have been the dominant cathodes in lithium‐ion batteries, and among them, high‐Ni ones (LiNixMnyCozO2; x ≥ 0.7) with greatly boosted capacity and reduced cost are of particular interest for large‐scale applications. The high Ni loading, on the other hand, raises the critical issues of surface instability and poor rate performance. The rational design of synthesis leading to layered LiNi0.7Mn0.15Co0.15O2 with greatly enhanced rate capability is demonstrated, by implementing a quenching process alternative to the general slow cooling. In situ synchrotron X‐ray diffraction, coupled with surface analysis, is applied to studies of the synthesis process, revealing cooling‐induced surface reconstruction involving Li2CO3 accumulation, formation of a Li‐deficient layer and Ni reduction at the particle surface. The reconstruction process occurs predominantly at high temperatures (above 350 °C) and is highly cooling‐rate dependent, implying that surface reconstruction can be suppressed through synthetic control, i.e., quenching to improve the surface stability and rate performance of the synthesized materials. These findings may provide guidance to rational synthesis of high‐Ni cathode materials.  相似文献   
828.
Evergestis extimalis  (Scopoli) is a pest insect present in spring rape fields of the Qinghai–Tibet plateau. A survey of its distribution and analysis of its physiological and biochemical variances of its overwintering larvae were conducted in this study. Prior to 2006, Evergestis extimalis Scopli appeared only sporadically at the east agricultural district of Qinghai Province at 2,100 m elevation; after 2006, there have been frequent outbreaks at 2,200 m or so height. The insect's distribution has extended continuously toward higher altitudes yearly, and the scope of its damage reached 2,800 m height in 2010. These changes indicate that the cold hardiness of E. extimalis is on the rise. Physiological and biochemical analyses were performed for the insect's overwintering larvae from November 2011 to March 2012. The supercooling point (SCP) and freezing point (FP) ranged from ?6.85°C to ?12.49°C and from ?6.23°C to ?8.17°C, respectively, and both were at their respective lowest points in January 2012; the lowest points of water and fat contents (which did not vary to any extreme degree throughout the test period) were also observed in January 2012. Glycogen content varied from 2.42 mg/g to 4.56 mg/g. Protein content increased gradually at the first two months and reached its peak in January 2012 before dropping slightly. The activity of protective enzymes POD, CAT, and SOD varied with changes in environmental temperature, and each was at its lowest point in January 2012. With the exception of protein and glycerol content, other physiological and biochemical variances were generally parallel with environmental temperature, strongly indicating that E. extimalis has indeed developed cold hardiness.  相似文献   
829.
Aims Episodic wildfires are expected to occur more frequently under future climate change scenarios, with substantial effects on CO2exchange between terrestrial ecosystems and the atmosphere. This study examined the effects of wildfire on soil respiration (RS) and its heterotrophic (RH) and autotrophic (RA) components, as well as their temperature responses (temperature sensitivity,Q10).  相似文献   
830.
Marine mammals are important models for studying convergent evolution and aquatic adaption, and thus reference genomes of marine mammals can provide evolutionary insights. Here, we present the first chromosome‐level marine mammal genome assembly based on the data generated by the BGISEQ‐500 platform, for a stranded female sperm whale (Physeter macrocephalus). Using this reference genome, we performed chromosome evolution analysis of the sperm whale, including constructing ancestral chromosomes, identifying chromosome rearrangement events and comparing with cattle chromosomes, which provides a resource for exploring marine mammal adaptation and speciation. We detected a high proportion of long interspersed nuclear elements and expanded gene families, and contraction of major histocompatibility complex region genes which were specific to sperm whale. Using comparisons with sheep and cattle, we analysed positively selected genes to identify gene pathways that may be related to adaptation to the marine environment. Further, we identified possible convergent evolution in aquatic mammals by testing for positively selected genes across three orders of marine mammals. In addition, we used publicly available resequencing data to confirm a rapid decline in global population size in the Pliocene to Pleistocene transition. This study sheds light on the chromosome evolution and genetic mechanisms underpinning sperm whale adaptations, providing valuable resources for future comparative genomics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号