全文获取类型
收费全文 | 33031篇 |
免费 | 2954篇 |
国内免费 | 4195篇 |
专业分类
40180篇 |
出版年
2024年 | 103篇 |
2023年 | 408篇 |
2022年 | 1007篇 |
2021年 | 1534篇 |
2020年 | 1235篇 |
2019年 | 1419篇 |
2018年 | 1367篇 |
2017年 | 1095篇 |
2016年 | 1330篇 |
2015年 | 2105篇 |
2014年 | 2481篇 |
2013年 | 2690篇 |
2012年 | 3229篇 |
2011年 | 2949篇 |
2010年 | 1874篇 |
2009年 | 1731篇 |
2008年 | 2111篇 |
2007年 | 1826篇 |
2006年 | 1704篇 |
2005年 | 1398篇 |
2004年 | 1274篇 |
2003年 | 1141篇 |
2002年 | 1021篇 |
2001年 | 489篇 |
2000年 | 386篇 |
1999年 | 340篇 |
1998年 | 300篇 |
1997年 | 203篇 |
1996年 | 196篇 |
1995年 | 185篇 |
1994年 | 145篇 |
1993年 | 114篇 |
1992年 | 128篇 |
1991年 | 95篇 |
1990年 | 71篇 |
1989年 | 75篇 |
1988年 | 54篇 |
1987年 | 55篇 |
1986年 | 50篇 |
1985年 | 48篇 |
1984年 | 20篇 |
1983年 | 21篇 |
1982年 | 30篇 |
1981年 | 11篇 |
1980年 | 7篇 |
1978年 | 9篇 |
1977年 | 10篇 |
1973年 | 8篇 |
1971年 | 9篇 |
1965年 | 7篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Jun Lei Hongjian Wang Daoming Zhu Yibin Wan Lei Yin 《Journal of cellular physiology》2020,235(5):4814-4823
CD8+ T cells play a vital role in cancer immunotherapy and can be shaped by metabolism. Avasimibe is an acyl coenzyme A-cholesterol acyltransferase (ACAT) inhibitor, which has been clinically verified safe in other phase Ⅲ clinical trials. It can potentiate the killing function of CD8+ T cells by modulating cholesterol metabolism. Doxorubicin (DOX) is an anticancer drug widely used in many cancers to induce tumor cell apoptosis. Unfortunately, DOX also can induce toxic and side effects in many organs, compromising its usage and efficacy. Herein, we report the combinational usage of avasimibe and a safe pH sensitive nano-drug delivery system composing of DOX and metal–organic frameworks nanoparticles (MNPs). Our findings demonstrated that DOX–MNPs treatment inhibited tumor growth with good safety profile and avasimibe treatment combined DOX–MNPs treatment exhibited a better efficacy than monotherapies in 4T1 breast cancer therapy. 相似文献
72.
73.
Zhi Qian Zeyuan Zhong Shuo Ni Dejian Li Fangxue Zhang Ying Zhou Zhanrong Kang Jun Qian Baoqing Yu 《Journal of cellular and molecular medicine》2020,24(17):10112-10127
Postmenopausal Osteoporosis (PMOP) is oestrogen withdrawal characterized of much production and activation by osteoclast in the elderly female. Cytisine is a quinolizidine alkaloid that comes from seeds or other plants of the Leguminosae (Fabaceae) family. Cytisine has been shown several potential pharmacological functions. However, its effects on PMOP remain unknown. This study designed to explore whether Cytisine is able to suppress RANKL‐induced osteoclastogenesis and prevent the bone loss induced by oestrogen deficiency in ovariectomized (OVX) mice. In this study, we investigated the effect of Cytisine on RAW 264.7 cells and bone marrow monocytes (BMMs) derived osteoclast culture system in vitro and observed the effect of Cytisine on ovariectomized (OVX) mice model to imitate postmenopausal osteoporosis in vivo. We found that Cytisine inhibited F‐actin ring formation and tartrate‐resistant acid phosphatase (TRAP) staining in dose‐dependent ways, as well as bone resorption by pit formation assays. For molecular mechanism, Cytisine suppressed RANK‐related trigger RANKL by phosphorylation JNK/ERK/p38‐MAPK, IκBα/p65‐NF‐κB, and PI3K/AKT axis and significantly inhibited these signalling pathways. However, the suppression of PI3K‐AKT‐NFATc1 axis was rescued by AKT activator SC79. Meanwhile, Cytisine inhibited RANKL‐induced RANK‐TRAF6 association and RANKL‐related gene and protein markers such as NFATc1, Cathepsin K, MMP‐9 and TRAP. Our study indicated that Cytisine could suppress bone loss in OVX mouse through inhibited osteoclastogenesis. All data provide the evidence that Cytisine may be a promising agent in the treatment of osteoclast‐related diseases such as osteoporosis. 相似文献
74.
Recently, emerging evidence has suggested that carcinoma-associated fibroblasts (CAFs) could contribute to chemotherapy resistances in breast cancer treatment. The aim of this study is to compare the gene expression profiling of CAFs before and after chemotherapy and pick up candidate genes that might associate with chemotherapy resistance and could be used as predictors of treatment response. CAFs were cultured from surgically resected primary breast cancers and identified with immunohistochemistry (IHC) and Flow cytometry (FCM). MDA-MB-231 cells were cultured as the breast cancer cell line. Cell adhesion assay, invasion assay, and proliferation assay (MTT) were performed to compare the function of MDA-MB-231 cells co-cultured with CAFs and MDA-MB-231 cells without co-culture, after chemotherapy. Totally 6 pairs of CAFs were prepared for microarray analysis. Each pair of CAFs were obtained from the same patient and classified into two groups. One group was treated with Taxotere (regarded as after chemotherapy) while the other group was not processed with Taxotere (regarded as before chemotherapy). According to our study, the primary-cultured CAFs exhibited characteristic phenotype. After chemotherapy, MDA-MB-231 cells co-cultured with CAFs displayed increasing adhesion, invasiveness and proliferation abilities, compared with MDA-MB-231 cells without CAFs. Moreover, 35 differentially expressed genes (absolute fold change >2) were identified between CAFs after chemotherapy and before chemotherapy, including 17 up-regulated genes and 18 down-regulated genes. CXCL2, MMP1, IL8, RARRES1, FGF1, and CXCR7 were picked up as the candidate markers, of which the differential expression in CAFs before and after chemotherapy was confirmed. The results indicate the changes of gene expression in CAFs induced by Taxotere treatment and propose the candidate markers that possibly associate with chemotherapy resistance in breast cancer. 相似文献
75.
Kezuka Y Kitazaki K Itoh Y Watanabe J Takaha O Watanabe T Nishizawa Y Nonaka T 《Protein and peptide letters》2004,11(4):401-405
We report here on crystallization and preliminary X-ray analysis of plant class I chitinase from rice (OsChia1b). Similar single crystals of full-length OsChia1b were obtained under two independent conditions. The crystals grown under these conditions diffracted up to 2.1 and 2.5 angstroms resolution, respectively, at a synchrotron beamline, and were found to belong to the tetragonal space group P4(3)2(1)2. 相似文献
76.
Major histocompatibility complex class I (MHC I)-restricted CD8(+) T-cell responses play a pivotal role in anti-human immunodeficiency virus (HIV) immunity and the control of viremia. The rhesus macaque is an important animal model for HIV-related research. Among the MHC I alleles of the rhesus macaque, Mamu-A 02 is prevalent, presenting in ≥20% of macaques. In this study, we determined the crystal structure of Mamu-A 02, the second structure-determined MHC I from the rhesus macaque after Mamu-A 01. The peptide presentation characteristics of Mamu-A 02 are exhibited in complex structures with two typical Mamu-A 02-restricted CD8(+) T-cell epitopes, YY9 (Nef159 to -167; YTSGPGIRY) and GY9 (Gag71 to -79; GSENLKSLY), derived from simian immunodeficiency virus (SIV). These two peptides utilize similar primary anchor residues (Ser or Thr) at position 2 and Tyr at position 9. However, the central region of YY9 is different from that of GY9, a difference that may correlate with the immunogenic variance of these peptides. Further analysis indicated that the distinct conformations of these two peptides are modulated by four flexible residues in the Mamu-A 02 peptide-binding groove. The rare combination of these four residues in Mamu-A 02 leads to a variant presentation for peptides with different residues in their central regions. Additionally, in the two structures of the Mamu-A 02 complex, we compared the binding of rhesus and human β(2) microglobulin (β(2)m) to Mamu-A 02. We found that the peptide presentation of Mamu-A 02 is not affected by the interspecies interaction with human β(2)m. Our work broadens the understanding of CD8(+) T-cell-specific immunity against SIV in the rhesus macaque. 相似文献
77.
78.
Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast 下载免费PDF全文
Fission yeast has two TOR (target of rapamycin) kinases, namely Tor1 and Tor2. Tor1 is required for survival under stressed conditions, proper G(1) arrest, and sexual development. In contrast, Tor2 is essential for growth. To analyze the functions of Tor2, we constructed two temperature-sensitive tor2 mutants. Interestingly, at the restrictive temperature, these mutants mimicked nitrogen starvation by arresting the cell cycle in G(1) phase and initiating sexual development. Microarray analysis indicated that expression of nitrogen starvation-responsive genes was induced extensively when Tor2 function was suppressed, suggesting that Tor2 normally mediates a signal from the nitrogen source. As with mammalian and budding yeast TOR, we find that fission yeast TOR also forms multiprotein complexes analogous to TORC1 and TORC2. The raptor homologue, Mip1, likely forms a complex predominantly with Tor2, producing TORC1. The rictor/Avo3 homologue, Ste20, and the Avo1 homologue, Sin1, appear to form TORC2 mainly with Tor1 but may also bind Tor2. The Lst8 homologue, Wat1, binds to both Tor1 and Tor2. Our analysis shows, with respect to promotion of G(1) arrest and sexual development, that the loss of Tor1 (TORC2) and the loss of Tor2 (TORC1) exhibit opposite effects. This highlights an intriguing functional relationship among TOR kinase complexes in the fission yeast Schizosaccharomyces pombe. 相似文献
79.
80.