首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31739篇
  免费   2631篇
  国内免费   3169篇
  37539篇
  2024年   101篇
  2023年   431篇
  2022年   1096篇
  2021年   1764篇
  2020年   1230篇
  2019年   1426篇
  2018年   1417篇
  2017年   1058篇
  2016年   1426篇
  2015年   2065篇
  2014年   2371篇
  2013年   2593篇
  2012年   2948篇
  2011年   2705篇
  2010年   1626篇
  2009年   1531篇
  2008年   1706篇
  2007年   1520篇
  2006年   1343篇
  2005年   1136篇
  2004年   857篇
  2003年   770篇
  2002年   647篇
  2001年   448篇
  2000年   451篇
  1999年   445篇
  1998年   269篇
  1997年   241篇
  1996年   245篇
  1995年   231篇
  1994年   209篇
  1993年   152篇
  1992年   222篇
  1991年   162篇
  1990年   150篇
  1989年   108篇
  1988年   81篇
  1987年   72篇
  1986年   57篇
  1985年   58篇
  1984年   30篇
  1983年   26篇
  1982年   28篇
  1981年   13篇
  1980年   8篇
  1978年   9篇
  1975年   6篇
  1973年   5篇
  1971年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
131.
Nanofibers(NFs)have been widely used in tissue engineering such as wound healing.In this work,the antibacterial ZnO quantum dots(ZnO QDs)have been incorporated into the biocompatible poly(ε-caprolactone)/collagen(PCL/Col)fibrous scaffolds for wound healing.The as-fabricated PCL-Col/ZnO fibrous scaffolds exhibited good swelling,antibacterial activity,and biodegradation behaviors,which were beneficial for the applications as a wound dressing.Moreover,the PCL-Col/ZnO fibrous scaffolds showed excellent cytocompatibility for promoting cell proliferation.The resultant PCL-Col/ZnO fibrous scaffolds containing vascular endothelial growth factor(VEGF)also exhibited promoted wound-healing effect through promoting expression of transforming growth factor-β(TGF-β)and the vascular factor(CD31)in tissues in the early stages of wound healing.This new electrospun fibrous scaffolds with wound-healing promotion and antibacterial property should be convenient for treating wound healing.  相似文献   
132.
133.
134.
Podocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca2+ entry (SOCE) regulates a diversity of cellular processes in a variety of cell types. Calpain, a Ca2+-dependent cysteine protease, was recently shown to be involved in podocyte injury. In the present study, we sought to determine whether increased SOCE contributed to high glucose (HG)–induced podocyte injury through activation of the calpain pathway. In cultured human podocytes, whole-cell patch clamp indicated the presence of functional store-operated Ca2+ channels, which are composed of Orai1 proteins and mediate SOCE. Western blots showed that HG treatment increased the protein abundance of Orai1 in a dose-dependent manner. Consistently, calcium imaging experiments revealed that SOCE was significantly enhanced in podocytes following HG treatment. Furthermore, HG treatment caused overt podocyte F-actin disorganization as well as a significant decrease in nephrin protein abundance, both of which are indications of podocyte injury. These podocyte injury responses were significantly blunted by both pharmacological inhibition of Orai1 using the small molecule inhibitor BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9 lentivirus. Moreover, activation of SOCE by thapsigargin, an inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic reticulum membrane, significantly increased the activity of calpain, which was inhibited by BTP2. Finally, the calpain-1/calpain-2 inhibitor calpeptin significantly blunted the nephrin protein reduction induced by HG treatment. Taken together, our results suggest that enhanced signaling via an Orai1/SOCE/Calpain axis contributes to HG-induced podocyte injury.  相似文献   
135.
136.
Macrophages play pivotal roles in the maintenance of tissue homeostasis. However, the reactivation of macrophages toward proinflammatory states correlates with a plethora of inflammatory diseases, including atherosclerosis, obesity, neurodegeneration, and bone marrow (BM) failure syndromes. The lack of methods to reveal macrophage phenotype and function in vivo impedes the translational research of these diseases. Here, we found that proinflammatory macrophages accumulate intracellular lipid droplets (LDs) relative to resting or noninflammatory macrophages both in vitro and in vivo, indicating that LD accumulation serves as a structural biomarker for macrophage phenotyping. To realize the staining and imaging of macrophage LDs in vivo, we developed a fluorescent fatty acid analog-loaded poly(lactic-co-glycolic acid) nanoparticle to label macrophages in mice with high efficiency and specificity. Using these novel nanoparticles, we achieved in situ functional identification of single macrophages in BM, liver, lung, and adipose tissues under conditions of acute or chronic inflammation. Moreover, with this intravital imaging platform, we further realized in vivo phenotyping of individual macrophages in the calvarial BM of mice under systemic inflammation. In conclusion, we established an efficient in vivo LD labeling and imaging system for single macrophage phenotyping, which will aid in the development of diagnostics and therapeutic monitoring. Moreover, this method also provides new avenues for the study of lipid trafficking and dynamics in vivo.Supplementary key words: macrophage, inflammation, lipid droplet, nanoparticle delivery, in vivo imaging, fatty acid analog, bone marrow, systemic inflammation, lipid trafficking, biomarker

Macrophages, a type of immune cells, almost reside in all tissues of body, from the skin to the bone marrow (BM) (1). Macrophages have remarkable plasticity, and they can be activated into specific subtypes by modifying their physiology and functions in response to local environmental cues. Activated macrophages are commonly divided into proinflammatory killing subtype and anti-inflammatory repairing subtype. Proinflammatory macrophages responding to bacteria, IFN-γ, and lipopolysaccharide (LPS) are involved in host defense and inflammation, whereas anti-inflammatory macrophages responding to interleukin-4 (IL-4), IL-10, and IL-13 play a pivotal role in tissue homeostasis and remodeling (2). Increasing evidence indicates that the reactivation of macrophages toward proinflammatory states under diverse kinds of stress is correlated with a plethora of inflammatory diseases, such as atherosclerosis, diabetes, obesity, rheumatoid arthritis, neurodegeneration, and BM failure syndromes (3, 4). Thus, characterization of macrophage activation status and the underlying molecular mechanism in situ will help elucidate their functions in these diseases; however, in vivo analysis of the macrophage activation status in their native multicellular microenvironment is challenging.Although lipid droplets (LDs) have been initially described as intracellular fat storage organelles in adipocytes, increasing studies indicate that myeloid cells also form LDs under inflammation and stress (5, 6). Macrophages, as the effector cells of innate immunity, are found to form LDs to support their host defense when exposed to pathogens, such as parasites, bacteria, and viruses (7, 8, 9, 10, 11). However, abnormal LD accumulation in tissue-resident macrophages correlates with the pathogenesis of various inflammatory diseases. For instance, foam cells in atherosclerotic lesions can maintain the local inflammatory response by secreting proinflammatory cytokines (12, 13, 14). Moreover, LD-accumulating microglia contribute to neurodegeneration by producing high levels of reactive oxygen species (ROS) and secreting proinflammatory cytokines (15). These findings indicate that LD accumulation might be a hallmark of macrophages with proinflammatory functions.In this study, based on the typical activation of in vitro BM-derived macrophages, we find that proinflammatory M(LPS + IFN-γ) macrophages are characterized by LD accumulation, whereas resting macrophages and anti-inflammatory M(IL-4) and M(IL-10) macrophages do not contain any LDs. These features also hold for Matrigel plug-recruited macrophages and tissue-resident macrophages in mice. These findings demonstrate that LD accumulation could serve as a morphological index to distinguish proinflammatory macrophages from others.It is feasible to distinguish LD-containing cells using imaging techniques, which has translational potential for identification of proinflammatory macrophages in vivo. However, current techniques for LD visualization are traditional in vitro staining method, and in vivo staining and imaging of LD in individual macrophages remains a challenge. Through nanocarrier screening, we selected the poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) as nanocarrier to deliver the lipophilic carbocyanine dye (DiIC18(5) solid (1,1''-dioctadecyl-3,3,3'',3''-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt) [DiD]) and lipid staining dye (C1-BODIPY 500/510-C12) into macrophages. Using these dual fluorescence-labeled PLGA NPs, we achieved in situ and in vivo functional identification of single macrophages in various tissues under systemic or local inflammatory stress. Collectively, this study establishes an efficient in vivo labeling and imaging system of intracellular LDs for phenotyping the activation status and functions of individual macrophages in their dynamic niche, which is pivotal for disease diagnosis and preclinical research.  相似文献   
137.
Mitophagy plays a vital role in the maintenance of mitochondrial homeostasis and tumorigenesis. Noncoding RNA piR-823 contributes to colorectal tumorigenesis. In this study, we aim to evaluate piR-823-mediated mitophagy and its mechanistic association with colorectal cancer (CRC). Digital gene expression analysis was performed to explore the potential functions of piR-823. A piR-823 antagomir (Ant-823) was used to inhibit piR-823 expression, and piR-823 mimics (mimics-823) were used to increase piR-823 expression. Mitophagy was measured in vivo and in vitro by immunofluorescence and western blot analysis. JC-1 staining, ATP production, real-time PCR, and western blot analysis were used to measure changes in mitochondrial quality and number. siRNA transfection was used to inhibit mitophagy, and CCCP was used to induce mitophagy. RNA pull-down assays and RNA-binding protein immunoprecipitation assays were conducted to investigate the molecular mechanisms. Here, we found that CRC cells transfected with Ant-823 presented an altered expression of autophagic and mitophagy genes by Digital gene expression analysis. Ant-823 could promote Parkin activation and mitophagy in vitro and in vivo, followed by mitochondrial loss and dysfunction of some mitochondria, whereas mimics-823 exerted the opposite effects in CRC cells. The inhibition of mitophagy by siParkin alleviated Ant-823-induced mitochondrial loss and dysfunction, as well as apoptosis to a certain extent. Furthermore, piR-823 was found to interact with PINK1 and promote its ubiquitination and proteasome-dependent degradation, thus alleviating mitophagy. Finally, these findings were verifed in samples obtained by patients affected by colorectal cancer. In conclusion, we identify a novel mechanism by which piR-823 regulates mitophagy during CRC tumorigenesis by increasing PINK1 degradation. Subject terms: Colorectal cancer, Gastrointestinal cancer  相似文献   
138.
We have recently purified mammalian sterile 20 (STE20)–like kinase 3 (MST3) as a kinase for the multifunctional kinases, AMP-activated protein kinase–related kinases (ARKs). However, unresolved questions from this study, such as remaining phosphorylation activities following deletion of the Mst3 gene from human embryonic kidney cells and mice, led us to conclude that there were additional kinases for ARKs. Further purification recovered Ca2+/calmodulin-dependent protein kinase kinases 1 and 2 (CaMKK1 and 2), and a third round of purification revealed mitogen-activated protein kinase kinase kinase kinase 5 (MAP4K5) as potential kinases of ARKs. We then demonstrated that MST3 and MAP4K5, both belonging to the STE20-like kinase family, could phosphorylate all 14 ARKs both in vivo and in vitro. Further examination of all 28 STE20 kinases detected variable phosphorylation activity on AMP-activated protein kinase (AMPK) and the salt-inducible kinase 3 (SIK3). Taken together, our results have revealed novel relationships between STE20 kinases and ARKs, with potential physiological and pathological implications.  相似文献   
139.
BackgroundDengue fever has been a significant public health challenge in China. This will be particularly important in the context of global warming, frequent international travels, and urbanization with increasing city size and population movement. In order to design relevant prevention and control strategies and allocate health resources reasonably, this study evaluated the economic burden of dengue fever in China in 2019.MethodsThe economic burden of dengue fever patients was calculated from both family and the organisation perspectives. A survey was conducted among 1,027 dengue fever patients in Zhejiang, Chongqing, and Yunnan Provinces. Treatment expenses, lost working days, and insurance reimbursement expenses information were collected to estimate the total economic burden of dengue fever patients in 2019. The expenditures related to dengue fever prevention and control from government, Center for Disease Control and Prevention (CDC), communities and subdistrict offices of 30 counties (or districts) in Zhejiang Province and Chongqing City were also collected.ResultsThe direct, indirect and total economic burden for dengue fever patients in 2019 in the three Provinces were about 36,927,380.00 Chinese Yuan (CNY), 10,579,572.00 CNY and 46,805,064.00 CNY, respectively. The costs for prevention and control of dengue fever for the counties (or districts) without cases, counties (or districts) with imported cases, and counties (or districts) with local cases are 205,800.00 CNY, 731,180.00 CNY and 6,934,378.00 CNY, respectively. The total investment of dengue fever prevention and control in the 30 counties in China in 2019 was approximately 3,166,660,240.00 CNY.ConclusionThe economic burden of dengue fever patients is relatively high, and medical insurance coverage should be increased to lighten patients’ direct medical economic burden. At the same time, the results suggests that China should increase funding for primary health service institutions to prevent dengue fever transmission.  相似文献   
140.
Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.Subject terms: Cell death, Molecular biology  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号