全文获取类型
收费全文 | 11420篇 |
免费 | 1071篇 |
国内免费 | 1698篇 |
专业分类
14189篇 |
出版年
2024年 | 46篇 |
2023年 | 198篇 |
2022年 | 474篇 |
2021年 | 693篇 |
2020年 | 513篇 |
2019年 | 561篇 |
2018年 | 561篇 |
2017年 | 419篇 |
2016年 | 534篇 |
2015年 | 855篇 |
2014年 | 905篇 |
2013年 | 986篇 |
2012年 | 1177篇 |
2011年 | 1040篇 |
2010年 | 587篇 |
2009年 | 592篇 |
2008年 | 610篇 |
2007年 | 554篇 |
2006年 | 525篇 |
2005年 | 424篇 |
2004年 | 315篇 |
2003年 | 246篇 |
2002年 | 224篇 |
2001年 | 129篇 |
2000年 | 127篇 |
1999年 | 127篇 |
1998年 | 84篇 |
1997年 | 71篇 |
1996年 | 67篇 |
1995年 | 59篇 |
1994年 | 52篇 |
1993年 | 37篇 |
1992年 | 65篇 |
1991年 | 50篇 |
1990年 | 40篇 |
1989年 | 31篇 |
1988年 | 28篇 |
1987年 | 29篇 |
1986年 | 23篇 |
1985年 | 23篇 |
1984年 | 13篇 |
1983年 | 12篇 |
1982年 | 13篇 |
1981年 | 6篇 |
1978年 | 8篇 |
1977年 | 6篇 |
1973年 | 5篇 |
1972年 | 4篇 |
1971年 | 6篇 |
1970年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
61.
62.
63.
64.
65.
Jun Liu Tao Lin Douglas J. Botkin Erin McCrum Hanspeter Winkler Steven J. Norris 《Journal of bacteriology》2009,191(16):5026-5036
The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of ∼1,280 flagellar motors, a ∼3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation.Flagellum-based motility plays a critical role in the biology and pathogenesis of many bacteria (3, 6, 17, 31). The well-conserved flagellum is commonly divided into three physical parts: the flagellar motor, the helically shaped flagellar filament, and the hook which provides a universal joint between the motor and the filament. In most bacteria, counterclockwise rotation of the flagella results in bundling of the helical flagella and propulsion of the cell through liquid or viscous environments. Clockwise rotation of the flagellar motor results in random turning of the cell with little translational motion (“tumbling”). Bacterial motility is thus a zigzag pattern of runs and tumbles, in which chemotactic signals favor running toward attractants and away from repellents (3).Borrelia burgdorferi and other closely related spirochetes are the causative agents of Lyme disease, which is transmitted to humans via infected Ixodes ticks (40). Spirochetes have a distinctive morphology in that the flagella are enclosed within the outer membrane sheath and are thus called periplasmic flagella (6). The flagellar motors are located at both ends of the cell and are coordinated to rotate in opposite directions during translational motion and in the same direction (i.e., both clockwise or both counterclockwise) during the spirochete equivalent of tumbling, called “flexing” (6, 15). Spirochetes are also capable of reversing translational motion by coordinated reversal of the direction of motor rotation at both ends of the cell. Rotation of the flagella causes a serpentine movement of the entire cell body, allowing B. burgdorferi to efficiently bore its way through tissue and disseminate throughout the mammalian host, resulting in manifestations in the joints, nervous system, and heart (40).The flagellar motor is an extraordinary nanomachine powered by the electrochemical potential of specific ions across the cytoplasmic membrane (3). Current knowledge of the flagellar motor structure and rotational mechanisms is based primarily on studies of Escherichia coli and Salmonella enterica and is summarized in several recent comprehensive reviews (3, 22, 31, 39, 42). The flagellar motor is constructed from at least 20 different kinds of proteins. The approximate location of these flagellar proteins has been determined by a variety of approaches and appears to be relatively consistent in a wide variety of bacteria. It can be divided into several morphological domains: the MS ring (FliF, the base for the flagellar motor); the C ring (FliG, FliM, and FliN, the switch complex regulating motor rotation); the export apparatus (multiple-protein complex located at the cytoplasmic side of the MS ring); the rod (connecting the MS ring and the hook); the L and P rings on the rod (thought to serve as bushings at the outer membrane and at the peptidoglycan layer, respectively); and the stator, which is the motor force generator embedded in the cytoplasmic membrane. Electron microscopy studies of the purified flagellar motor have provided a detailed view of the rotor/C-ring assembly (11, 44). However, there is no structural information on the stator and the export apparatus in these reconstructions, because these membrane-associated structures are not retained following detergent extraction during the extensive basal body purification process. The stator and the export apparatus were visualized by using freeze fracture preparations of cytoplasmic membranes. It appears that 10 to 16 stator units form circular arrays in the membrane (9, 20). Part of the export apparatus is located in the central space of the C ring (18). Recently a 7-nm-resolution structure of the intact flagellar motor in situ was revealed by averaging 20 structures obtained using cryo-electron tomography (cryo-ET) of Treponema primitia cells (32). Further analysis of the intact flagellar motor structure would lead to a better understanding of the motor protein distribution, the rotor-stator interaction, and the mechanism of bacterial motility.Cryo-ET has emerged as a three-dimensional (3-D) imaging technique to bridge the information gap between X-ray crystallographic and optical microscopic methods (24, 30). This process involves rapidly freezing viable cells, collecting a series of electron micrographs at different angles, and computationally combining the resulting images into a 3-D density map. Cryo-ET allows investigation of the structure-function relationship of molecular complexes and supramolecular assemblies in their cellular environments without fixation, dehydration, embedding, or sectioning artifacts. Spirochetes are well suited for cryo-ET analysis because of their narrow cell diameter (typically 0.2 to 0.3 μm). Recently the cellular architecture of Treponema primitia, Treponema denticola, and B. burgdorferi, as well as the configuration of the B. burgdorferi periplasmic flagella, were revealed by cryo-ET (7, 16, 26, 33). In combination with advanced computational methods, cryo-ET is currently the most promising approach for determining the cellular architecture in situ at molecular resolution (30). We have developed novel strategies for capturing and averaging thousands of 3-D images of large macromolecular assemblies to obtain ∼2.0-nm-resolution structures (28, 29).In this study, we present the molecular structures of infectious wild-type (WT) and mutant B. burgdorferi organisms and their flagellar motors in situ using high-throughput cryo-ET and 3-D image analysis. By averaging subvolumes of 1,280 flagellar motors from 322 cells, we obtained a ∼3.5-nm-resolution model of the intact flagellar motor, providing a detailed view of rotor-stator interactions. In addition, detergent treatment of intact cells provided a preliminary identification of the rotor and stator structures. Through the comparison of WT and mutant cells, we have also determined the location of the flgI gene product in the B. burgdorferi flagellar motor. 相似文献
66.
Homer RJ Zheng T Chupp G He S Zhu Z Chen Q Ma B Hite RD Gobran LI Rooney SA Elias JA 《American journal of physiology. Lung cellular and molecular physiology》2002,283(1):L52-L59
Interleukin (IL)-13, a key mediator of Th2-mediated immunity, contributes to the pathogenesis of asthma and other pulmonary diseases via its ability to generate fibrosis, mucus metaplasia, eosinophilic inflammation, and airway hyperresponsiveness. In these studies, we compared surfactant accumulation in wild-type mice and mice in which IL-13 was overexpressed in the lung. When compared with littermate controls, transgenic animals showed alveolar type II cell hypertrophy under light and electron microscopy. Over time, their alveoli also filled with surfactant in a pulmonary alveolar proteinosis pattern. At the same time, prominent interstitial fibrosis occurs. Bronchoalveolar lavage fluid from these mice had a three- to sixfold increase in surfactant phospholipids. Surfactant proteins (SP)-A, -B, and -C showed two- to threefold increases, whereas SP-D increased 70-fold. These results indicate that IL-13 is a potent stimulator of surfactant phospholipid and surfactant accumulation in the lung. IL-13 may therefore play a central role in the broad range of chronic pulmonary conditions in which fibrosis, type II cell hypertrophy, and surfactant accumulation occur. 相似文献
67.
Mingjun Wang Jian Wu Erye Zhou Xin Chang Jianhe Gan Tao Cheng 《Journal of cellular physiology》2019,234(11):20139-20148
69.
在青藏高原逐渐形成的过程中, 本地区的现代生物多样性塑造受到其巨大的影响, 与此同时, 许多起源于高原的物种甚至现代广布类群祖先的洲际扩散也由其驱动。在中生代时期, 青藏高原今天所处的地区覆盖着广阔的海洋, 喜马拉雅山脉的三叠纪海相沉积中产有鱼龙和旋齿鲨等脊椎动物化石。至侏罗—白垩纪, 西藏东南部的部分地区逐渐脱离海洋环境, 在昌都盆地形成了与当时四川盆地相似的淡水湖泊, 恐龙等爬行动物则在湖边活动。新生代早期印度板块与欧亚板块的碰撞使青藏高原逐渐隆起, 一些热带、亚热带鱼类的发现, 表明当时青藏地区内部与东南亚的热带地区之间可能有水系连通。随着这一地区地势隆起幅度显著升高, 环境变干、变凉, 致使喜暖鱼类终于在此绝迹, 并转换为青藏高原特有的裂腹鱼类。青藏高原的快速上升导致季风气候加强, 中亚内陆地区的气候持续走向干旱, 中国西部的中新世动物群主要由耐旱的草原型哺乳动物组成, 还有耐旱的鸟类和爬行动物共生。青藏高原在上新世最终达到现代的高度, 其气候环境已具有冰冻圈的特点, 成为冰期动物群最初的演化中心。2.6 Ma全球气温第一次下降到低于今天的水平, 已经适应了冰冻环境的动物迅速扩散到青藏高原周边以及更遥远的地区, 成为现代动物多样性的基础。青藏高原在地质历史时期经历了复杂而大规模的环境变化, 这一系列的地质运动和地貌演化引发并形成了青藏高原及周边地区气候格局, 促进了本地区生物多样性的发展。 相似文献
70.
Liyuan Ma Qian Li Li Shen Xue Feng Yunhua Xiao Jiemeng Tao Yili Liang Huaqun Yin Xueduan Liu 《Journal of industrial microbiology & biotechnology》2016,43(10):1441-1453
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S0 substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed. 相似文献