首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   625篇
  免费   32篇
  2023年   2篇
  2022年   6篇
  2021年   20篇
  2020年   8篇
  2019年   9篇
  2018年   10篇
  2017年   9篇
  2016年   23篇
  2015年   35篇
  2014年   31篇
  2013年   37篇
  2012年   37篇
  2011年   35篇
  2010年   25篇
  2009年   34篇
  2008年   39篇
  2007年   34篇
  2006年   31篇
  2005年   22篇
  2004年   26篇
  2003年   27篇
  2002年   28篇
  2001年   19篇
  2000年   12篇
  1999年   9篇
  1998年   8篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   10篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1987年   5篇
  1984年   6篇
  1983年   4篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   4篇
  1974年   7篇
  1973年   2篇
  1972年   3篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1959年   1篇
排序方式: 共有657条查询结果,搜索用时 31 毫秒
71.
72.
73.
Eukaryotic cells plasma membranes are organized into microdomains of specialized function such as lipid rafts and caveolae, with a specific lipid composition highly enriched in cholesterol and glycosphingolipids. In addition to their role in regulating signal transduction, multiple functions have been proposed, such as anchorage of receptors, trafficking of cholesterol, and regulation of permeability. However, an extensive understanding of their protein composition in human heart, both in failing and non-failing conditions, is not yet available. Membrane microdomains were isolated from left ventricular tissue of both failing (n = 15) and non-failing (n = 15) human hearts. Protein composition and differential protein expression was explored by comparing series of 2-D maps and subsequent identification by LC-MS/MS analysis. Data indicated that heart membrane microdomains are enriched in chaperones, cytoskeletal-associated proteins, enzymes and protein involved in signal transduction pathway. In addition, differential protein expression profile revealed that 30 proteins were specifically up- or down-regulated in human heart failure membrane microdomains. This study resulted in the identification of human heart membrane microdomain protein composition, which was not previously available. Moreover, it allowed the identification of multiple proteins whose expression is altered in heart failure, thus opening new perspectives to determine which role they may play in this disease.  相似文献   
74.
Glutathione disulfide (GSSG) accumulates in cells under an increased oxidant load, which occurs during neurohormonal or metabolic stimulation as well as in many disease states. Elevated GSSG promotes protein S-glutathiolation, a reversible post-translational modification, which can directly alter or regulate protein function. We developed novel strategies for the study of protein S-glutathiolation that involved the simple synthesis of N,N-biotinyl glutathione disulfide (biotin-GSSG). Biotin-GSSG treatment of cells mimics a defined component of oxidative stress, namely a shift in the glutathione redox couple to the oxidized disulfide state. This induces widespread protein S-glutathiolation, which was detected on non-reducing Western blots probed with streptavidin-horseradish peroxidase and imaged using confocal fluorescence microscopy and ExtrAvidin-FITC. S-Glutathiolated proteins were purified using streptavidin-agarose and identified using proteomic methods. We conclude that biotin-GSSG is a useful tool in the investigation of protein S-glutathiolation and offers significant advantages over conventional methods or antibody-based strategies. These novel approaches may find widespread utility in the study of disease or redox signaling models where GSSG accumulation occurs.  相似文献   
75.
A copper(I) complex of 2-aminobenzenethiol, [Cu(abt)] (1), has been synthesized and characterized. The crystal structure determination indicates a two-dimensional metallopolymeric network formed by edge and corner sharing [Cu(μ3-S)N] coordination tetrahedra wherein the copper(I) centers are coordinated to three bridging thiolate donors and the amino group of 2-aminobenzenethiolate. The copper, the sulfur and the nitrogen atoms form sub-lattices that reveal independently striking similarities to the double-layers present in black phosphorus.  相似文献   
76.
During early apoptosis, adult cardiomyocytes show unusual beating, suggesting possible participation of abnormal Ca(2+) transients in initiation of apoptotic processes in this cell type. Simultaneously with the beating, these cells show dynamic structural alteration resulting from cytoskeletal disintegration that is quite rapid. Because of the specialized structure and extensive cytoskeleton of cardiomyocytes, we hypothesized that its degradation in so short a time would require a particularly efficient mechanism. To better understand this mechanism, we used serial video microscopy to observe beta-adrenergic stimulation-induced apoptosis in isolated adult rat cardiomyocytes while simultaneously recording intracellular Ca(2+) concentration and cell length. Trains of Ca(2+) transients and corresponding rhythmic contractions and relaxations (beating) were observed in apoptotic cells. Frequencies of Ca(2+) transients and beating gradually increased with time and were accompanied by cellular shrinkage. As the cells shrank, amplitudes of Ca(2+) transients declined and diastolic intracellular Ca(2+) concentration increased until the transients were lost. Beating and progression of apoptosis were significantly inhibited by antagonists against the L-type Ca(2+) channel (nifedipine), ryanodine receptor (ryanodine), inositol 1,4,5-trisphosphate receptor (heparin), sarco(endo)plasmic Ca(2+)-ATPase (thapsigargin), and Na(+)/Ca(2+) exchanger (KB-R7943). Electron-microscopic examination of beating cardiomyocytes revealed progressive breakdown of Z disks. Immunohistochemical analysis and Western blot confirmed that disappearance of Z disk constituent proteins (alpha-actinin, desmin, and tropomyosin) preceded degradation of other cytoskeletal proteins. It thus appears that, in adult cardiomyocyte apoptosis, Ca(2+) transients mediate apoptotic beating and efficient sarcomere destruction initiated by Z disk breakdown.  相似文献   
77.
Midkine (MK) is a unique growth and differentiation factor that modulates the proliferation and migration of various cells; however, little is known regarding its relationship to intestinal diseases. The aim of this study was to investigate MK expression and its role in dextran sulfate sodium (DSS)-induced colitis in rats. The expressions of MK, receptor-like protein-tyrosine phosphatase (RPTP)-beta, and proinflammatory cytokines were examined in rat colonic tissues after the development of DSS-induced colitis using Northern blotting, immunohistochemistry, and laser-capture microdissection (LCM) coupled with RT-PCR. The effects of MK on the migration of intestinal epithelial cells (IEC-6) were also evaluated in vitro using an intestinal wound repair model. MK expression was significantly increased in damaged colonic mucosa, mainly from day 3 to day 5 after the end of DSS administration, with abundant MK immunoreactive signals detected in submucosal fibroblasts. Expressions of proinflammatory cytokines were most strongly induced on day 1, which preceded the augmentation of MK expression. Results of LCM coupled with RT-PCR clearly indicated RPTP-beta expression in colonic epithelial cells. The migration assay showed that wound repair in the MK-treated groups was accelerated dose dependently. The present results showed for the first time that intestinal inflammation upregulates the MK-RPTP-beta system, which may stimulate mucosal regeneration during the process of healing of colitis. Additional investigations regarding the role of MK may contribute to the development of new options for the treatment of inflammatory bowel diseases.  相似文献   
78.
In this study, we examined the regulation by putrescine, spermidine and spermine of nitric oxide (NO) biosynthesis in Arabidopsis thaliana seedlings. Using a fluorimetric method employing the cell-impermeable NO-binding dye diaminorhodamine-4M (DAR-4M), we observed that the polyamines (PAs) spermidine and spermine greatly increased NO release in the seedlings, whereas arginine and putrescine had little or no effect. Spermine, the most active PA, stimulated NO release with no apparent lag phase. The response was quenched by addition of 2-aminoethyl-2-thiopseudourea (AET), an inhibitor of the animal nitric oxide synthase (NOS) and plant NO biosynthesis, and by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxy-3-oxide (PTIO), an NO scavenger. By fluorescence microscopy, using the cell-permeable NO-binding dye diaminorhodamine-4M acetoxymethyl ester (DAR-4M AM), we observed that PAs induced NO biosynthesis in specific tissues in Arabidopsis seedlings. Spermine and spermidine increased NO biosynthesis in the elongation zone of the Arabidopsis root tip and in primary leaves, especially in the veins and trichomes, while in cotyledons little or no effect of PAs beyond the endogenous levels of NO-induced fluorescence was observed. We conclude that PAs induce NO biosynthesis in plants.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号