首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1279篇
  免费   100篇
  1379篇
  2023年   7篇
  2022年   18篇
  2021年   31篇
  2020年   15篇
  2019年   17篇
  2018年   21篇
  2017年   19篇
  2016年   35篇
  2015年   55篇
  2014年   60篇
  2013年   92篇
  2012年   102篇
  2011年   108篇
  2010年   74篇
  2009年   62篇
  2008年   100篇
  2007年   103篇
  2006年   81篇
  2005年   80篇
  2004年   73篇
  2003年   79篇
  2002年   57篇
  2001年   12篇
  2000年   7篇
  1999年   13篇
  1998年   13篇
  1997年   9篇
  1996年   2篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1974年   2篇
排序方式: 共有1379条查询结果,搜索用时 0 毫秒
191.
192.
We report the discovery and optimization of substituted 2-piperazinecarboxamides as potent and selective agonists of the melanocortin subtype-4 receptor. The 5- and 6-alkylated piperazine compounds exhibit low bioactivation potential as measured by covalent binding in microsome preparations.  相似文献   
193.
Methionine can be used as the sole sulfur source by the Mycobacterium tuberculosis complex although it is not obvious from examination of the genome annotation how these bacteria utilize methionine. Given that genome annotation is a largely predictive process, key challenges are to validate these predictions and to fill in gaps for known functions for which genes have not been annotated. We have addressed these issues by functional analysis of methionine metabolism. Transport, followed by metabolism of (35)S methionine into the cysteine adduct mycothiol, demonstrated the conversion of exogenous methionine to cysteine. Mutational analysis and cloning of the Rv1079 gene showed it to encode the key enzyme required for this conversion, cystathionine gamma-lyase (CGL). Rv1079, annotated metB, was predicted to encode cystathionine gamma-synthase (CGS), but demonstration of a gamma-elimination reaction with cystathionine as well as the gamma-replacement reaction yielding cystathionine showed it encodes a bifunctional CGL/CGS enzyme. Consistent with this, a Rv1079 mutant could not incorporate sulfur from methionine into cysteine, while a cysA mutant lacking sulfate transport and a methionine auxotroph was hypersensitive to the CGL inhibitor propargylglycine. Thus, reverse transsulfuration alone, without any sulfur recycling reactions, allows M. tuberculosis to use methionine as the sole sulfur source. Intracellular cysteine was undetectable so only the CGL reaction occurs in intact mycobacteria. Cysteine desulfhydrase, an activity we showed to be separable from CGL/CGS, may have a role in removing excess cysteine and could explain the ability of M. tuberculosis to recycle sulfur from cysteine, but not methionine.  相似文献   
194.
Sarcosine oxidase (SOX) is known as a peroxisomal enzyme in mammals and as a sarcosine-inducible enzyme in soil bacteria. Its presence in plants was unsuspected until the Arabidopsis genome was found to encode a protein (AtSOX) with approximately 33% sequence identity to mammalian and bacterial SOXs. When overexpressed in Escherichia coli, AtSOX enhanced growth on sarcosine as sole nitrogen source, showing that it has SOX activity in vivo, and the recombinant protein catalyzed the oxidation of sarcosine to glycine, formaldehyde, and H(2) O(2) in vitro. AtSOX also attacked other N-methyl amino acids and, like mammalian SOXs, catalyzed the oxidation of l-pipecolate to Delta(1)-piperideine-6-carboxylate. Like bacterial monomeric SOXs, AtSOX was active as a monomer, contained FAD covalently bound to a cysteine residue near the C terminus, and was not stimulated by tetrahydrofolate. Although AtSOX lacks a typical peroxisome-targeting signal, in vitro assays established that it is imported into peroxisomes. Quantitation of mRNA showed that AtSOX is expressed at a low level throughout the plant and is not sarcosine-inducible. Consistent with a low level of AtSOX expression, Arabidopsis plantlets slowly metabolized supplied [(14)C]sarcosine to glycine and serine. Gas chromatography-mass spectrometry analysis revealed low levels of pipecolate but almost no sarcosine in wild type Arabidopsis and showed that pipecolate but not sarcosine accumulated 6-fold when AtSOX expression was suppressed by RNA interference. Moreover, the pipecolate catabolite alpha-aminoadipate decreased 30-fold in RNA interference plants. These data indicate that pipecolate is the endogenous substrate for SOX in plants and that plants can utilize exogenous sarcosine opportunistically, sarcosine being a common soil metabolite.  相似文献   
195.
Staphylococcus aureus is among the most prevalent and antibiotic-resistant of pathogenic bacteria. The resistance of S. aureus to prototypal beta-lactam antibiotics is conferred by two mechanisms: (i) secretion of hydrolytic beta-lactamase enzymes and (ii) production of beta-lactam-insensitive penicillin-binding proteins (PBP2a). Despite their distinct modes of resistance, expression of these proteins is controlled by similar regulation systems, including a repressor (BlaI/MecI) and a multidomain transmembrane receptor (BlaR1/MecR1). Resistance is triggered in response to a covalent binding event between a beta-lactam antibiotic and the extracellular sensor domain of BlaR1/MecR1 by transduction of the binding signal to an intracellular protease domain capable of repressor inactivation. This study describes the first crystal structures of the sensor domain of BlaR1 (BlaRS) from S. aureus in both the apo and penicillin-acylated forms. The structures show that the sensor domain resembles the beta-lactam-hydrolyzing class D beta-lactamases, but is rendered a penicillin-binding protein due to the formation of a very stable acyl-enzyme. Surprisingly, conformational changes upon penicillin binding were not observed in our structures, supporting the hypothesis that transduction of the antibiotic-binding signal into the cytosol is mediated by additional intramolecular interactions of the sensor domain with an adjacent extracellular loop in BlaR1.  相似文献   
196.
In recent years, the elucidation of the structures of many signalling molecules has allowed new insights into the molecular mechanisms that govern signal transduction events. In the field of cytokine signalling, the solved structures of cytokine/receptor complexes and of key components involved in signal transduction such as STAT factors or the tyrosine phosphatase SHP2 have broadened our understanding of the molecular basis of the signalling events and provided key information for the rational design of therapeutic approaches to modulate or block cytokine signal transduction. Unfortunately, no structural data on the intracellular parts of cytokine receptors are available. The exact molecular mechanism underlying one of the first steps in signal transduction, namely the recruitment of signalling components to the cytoplasmic parts of cytokine receptors, remains elusive. Here we investigated possible mechanisms underlying the different potency of the STAT3-activating motifs of gp130 after IL-6 stimulation. Our data indicate that the extent of STAT3 activation by the different receptor motifs is not influenced by structural features such as contacts between the two gp130 chains. In addition, the proximity of the negatively regulating motif around tyrosine Y759 to the different STAT3-recruiting motifs does not seem to be responsible for their differential capacity to activate STAT3. However, the potency of a specific motif to activate STAT3 directly reflects the affinity for the binding of STAT3 to this motif.  相似文献   
197.
We investigated the allelic nature and map locations of Hordeum vulgare (barley) homologs to three classes of Arabidopsis low temperature (LT) regulatory genes—CBFs, ICE1, and ZAT12—to determine if there were any candidates for winterhardiness-related quantitative trait loci (QTL). We phenotyped the Dicktoo × Morex (D×M) mapping population under controlled freezing conditions and in addition to the previously reported 5H-L Fr-H1 QTL, observed three additional LT tolerance QTLs on 1H-L, 4H-S, and 4H-L. We identified and assigned either linkage map or chromosome locations to 1 ICE1 homolog, 2 ZAT12 homologs, and 17 of 20 CBF homologs. Twelve of the CBF genes were located on 5H-L and the 11 with assigned linkage map positions formed 2 tandem clusters on 5H-L. A subset of these CBF genes was confirmed to be physically linked, validating the map position clustering. The tandem CBF clusters are not candidates for the D×M LT tolerance Fr-H1 QTL, as they are ~30 cM distal to the QTL peak. No LT tolerance QTL was detected in conjunction with the CBF gene clusters in Dicktoo × Morex. However, comparative mapping using common markers and BIN positions established the CBF clusters are coincident with reported Triticeae LT tolerance and COR gene accumulation QTLs and suggest one or more of the CBF genes may be candidates for Fr-H2 in some germplasm combinations. These results suggest members of the CBF gene family may function as components of winterhardiness in the Triticeae and underscore both the importance of extending results from model systems to economically important crop species and in viewing QTL mapping results in the context of multiple germplasm combinations. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
198.
Atherosclerosis is a multifactor, highly complex disease with numerous aetiologies that work synergistically to promote lesion development. One of the emerging components that drive the development of both early- and late-stage atherosclerotic lesions is the participation of both the innate and acquired immune systems. In both humans and animal models of atherosclerosis, the most prominent cells that infiltrate evolving lesions are macrophages and T lymphocytes. The functional loss of either of these cell types reduces the extent of atherosclerosis in mice that were rendered susceptible to the disease by deficiency of either apolipoprotein E or the LDL (low density lipoprotein) receptor. In addition to these major immune cell participants, a number of less prominent leukocyte populations that can modulate the atherogenic process are also involved. This review will focus on the participatory role of two "less prominent" immune components, namely natural killer (NK) cells and natural killer T (NKT) cells. Although this review will highlight the fact that both NK and NKT cells are not sufficient for causing the disease, the roles played by both these cells types are becoming increasingly important in understanding the complexity of this disease process.  相似文献   
199.
Mutations in POLG account for one of the most frequent nuclear encoded causes of mitochondrial disorders to date. Individuals harboring POLG mutations exhibit fairly heterogeneous clinical presentations leading to increasing difficulties in classifying these patients into defined clinical phenotypes. This study aims to investigate the molecular basis of a mitochondrial cytopathy in a patient with 3-methylglutaconic aciduria and to expand the clinical phenotype associated with POLG mutations. Clinical, molecular and genetic analyses as well as neurophysiological examinations were carried out for a 23-year-old woman of mixed Caucasian and Latin American ancestry with a history of cataracts diagnosed at age 1 year, she had onset of distal muscle weakness at age 2 years progressing to atrophy and ovarian dysgenesis at puberty. The patient was found to have 3-methylglutaconic acid with normal 3 hydroxyisovaleric acid on urine organic acid analysis. POLG sequencing was done and a heterozygous variant, c.2851T>A (p.Y951N) was found which is predicted to be deleterious. There are limited reports of POLG mutations in individuals with 3-methylglutaconic aciduria. This case report of a young woman with a heterozygous mutation in POLG, presenting with muscle weakness and atrophy at a young age aims to aid clinicians in similar challenging diagnostic situations as well as enhances our understanding of POLG-related disease phenotypes.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号