首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1279篇
  免费   100篇
  2023年   7篇
  2022年   18篇
  2021年   31篇
  2020年   15篇
  2019年   17篇
  2018年   21篇
  2017年   19篇
  2016年   35篇
  2015年   55篇
  2014年   60篇
  2013年   92篇
  2012年   102篇
  2011年   108篇
  2010年   74篇
  2009年   62篇
  2008年   100篇
  2007年   103篇
  2006年   81篇
  2005年   80篇
  2004年   73篇
  2003年   79篇
  2002年   57篇
  2001年   12篇
  2000年   7篇
  1999年   13篇
  1998年   13篇
  1997年   9篇
  1996年   2篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1974年   2篇
排序方式: 共有1379条查询结果,搜索用时 140 毫秒
981.
Mre11/Rad50/Nbs1 complex (MRN) is essential to suppress the generation of double-strand breaks (DSBs) during DNA replication. MRN also plays a role in the response to DSBs created by DNA damage. Hypomorphic mutations in Mre11 (which causes an ataxia-telangiectasia-like disease [ATLD]) and mutations in the ataxia-telangiectasia-mutated (ATM) gene lead to defects in handling damaged DNA and to similar clinical and cellular phenotypes. Using Xenopus egg extracts, we have designed a simple assay to define the biochemistry of Mre11. MRN is required for efficient activation of the DNA damage response induced by DSBs. We isolated a high molecular weight DNA damage signaling complex that includes MRN, damaged DNA molecules, and activated ATM. Complex formation is partially dependent upon Zn2+ and requires an intact Mre11 C-terminal domain that is deleted in some ATLD patients. The ATLD truncation can still perform the role of Mre11 during replication. Our work demonstrates the role of Mre11 in assembling DNA damage signaling centers that are reminiscent of irradiation-induced foci. It also provides a molecular explanation for the similarities between ataxia-telangiectasia (A-T) and ATLD.  相似文献   
982.
We have identified a gene with gonad restricted expression throughout mouse development, which is orthologous to human EKI2 (ethanolamine kinase 2). Our studies showed that mouse Eki2 expression became upregulated in the male gonad during the period of sex determination. Expression was restricted to the Sertoli cells of the developing testis. Eki2 has sequence similarity to ethanolamine (73%) and choline kinases (54%).  相似文献   
983.
We present an individual-based, spatially-explicit model of the dynamics of a small mammal and its resource. The life histories of each individual animal are modeled separately. The individuals can have the status of residents or wanderers and belong to behaviorally differing groups of juveniles or adults and males or females. Their territory defending and monogamous behavior is taken into consideration. The resource, green vegetation, grows depending on seasonal climatic characteristics and is diminished due to the herbivore's grazing. Other specifics such as a varying personal energetic level due to feeding and starvation of the individuals, mating preferences, avoidance of competitors, dispersal of juveniles, as a result of site overgrazing, etc., are included in the model. We determined model parameters from real data for the species Microtus ochrogaster (prairie vole). The simulations are done for a case of an enclosed habitat without predators or other species competitors. The goal of the study is to find the relation between size of habitat and population persistence. The experiments with the model show the populations go extinct due to severe overgrazing, but that the length of population persistence depends on the area of the habitat as well as on the presence of fragmentation. Additionally, the total population size of the vole population obtained during the simulations exhibits yearly fluctuations as well as multi-yearly peaks of fluctuations. This dynamics is similar to the one observed in prairie vole field studies.  相似文献   
984.
The zona pellucida is an extracellular matrix that mediates taxon-specific fertilization in which human sperm will not bind to mouse eggs. The mouse zona pellucida is composed of three glycoproteins (ZP1, ZP2, ZP3). The primary structure of each has been deduced from the cDNA nucleic acid sequence, and each has been analyzed by mass spectrometry. However, determination of the secondary structure and processing of the human zona proteins have been hampered by the paucity of biological material. To investigate if taxon-specific sperm-egg recognition was ascribable to structural differences in a zona protein required for matrix formation, recombinant human ZP3 was expressed in CHO-Lec3.2.8.1 cells and compared to mouse ZP3. With nearly complete coverage, LC-QTOF mass spectrometry was used to determine the cleavage of an N-terminal signal peptide (amino acids 1-22) and the release of secreted ZP3 from a C-terminal transmembrane domain (amino acids 379-424). The resultant N-terminal glutamine was cyclized to pyroglutamate (pyrGln(23)), and several C-terminal peptides were detected, including one ending at Asn(350). The disulfide bond linkages of eight cysteine residues in the conserved zona domain were ascertained (Cys(46)/Cys(140), Cys(78)/Cys(99), Cys(217)/Cys(282), Cys(239)/Cys(300)), but the precise linkage of two additional disulfide bonds was indeterminate due to clustering of the remaining four cysteine residues (Cys(319), Cys(321), Cys(322), Cys(327)). Three of the four potential N-linked oligosaccharide binding sites (Asn(125), Asn(147), Asn(272)) were occupied, and clusters of O-glycans were observed within two regions, amino acids 156-173 and 260-281. Taken together, these data indicate that human and mouse ZP3 proteins are quite similar, and alternative explanations of taxon-specific sperm binding warrant exploration.  相似文献   
985.
Schneider TL  Walsh CT 《Biochemistry》2004,43(50):15946-15955
Oxazole and thiazole rings are present in numerous nonribosomal peptide natural products. Oxidase domains are responsible for catalyzing the oxidation of thiazolines and oxazolines to yield fully aromatic heterocycles. Unlike most domains, the placement of oxidase domains within assembly line modules varies. Noting this tolerance, we investigated the portability of an oxidase domain to a heterologous assembly line. The epimerase domain of PchE, involved in pyochelin biosynthesis, was replaced with the oxidase domain from MtaD, involved in myxothiazol biosynthesis. The chimeric module was expressed in soluble form as a flavin mononucleotide-containing flavoprotein. The functionality of the inserted oxidase domain was assayed within PchE and in transfer of the growing siderophore acyl chain from PchE to the next downstream module. While pyochelin-like product release was not observed downstream, the robust activity of the transplanted oxidase domain and the ability of the chimeric module to produce an advanced intermediate bound to the synthetase underscore the possibility of future engineering within nonribosomal peptide synthetase pathways using oxidase domains.  相似文献   
986.
987.
988.
A general role for Rab27a in secretory cells   总被引:10,自引:0,他引:10       下载免费PDF全文
Vesicular transport is a complex multistep process regulated by distinct Rab GTPases. Here, we show for the first time that an EGFP-Rab fusion protein is fully functional in a mammalian organism. We constructed a PAC-based transgenic mouse, which expresses EGFP-Rab27a under the control of endogenous Rab27a promoter. The EGFP-Rab27a transgene was fully functional and rescued the two major defects of the ashen Rab27a knockout mouse. We achieved cell-specific expression of EGFP-Rab27a, which faithfully followed the pattern of expression of endogenous Rab27a. We found that Rab27a is expressed in an exceptionally broad range of specialized secretory cells, including exocrine (particularly in mucin- and zymogen-secreting cells), endocrine, ovarian, and hematopoietic cells, most of which undergo regulated exocytosis. We suggest that Rab27a acts in concert with Rab3 proteins in most regulated secretory events. The present strategy represents one way in which the complex pattern of expression and function of proteins involved in specialized cell types may be unraveled.  相似文献   
989.
Folate metabolism in Plasmodium falciparum is the target of important antimalarial agents. The biosynthetic pathway converts GTP to polyglutamated derivatives of tetrahydrofolate (THF), essential cofactors for DNA synthesis. Tetrahydrofolate can also be acquired by salvage mechanisms. Using a transfection system adapted to studying this pathway, we investigated modulation of dihydropteroate synthase (DHPS) activity on parasite phenotypes. Dihydropteroate synthase incorporates p-aminobenzoate (pABA) into dihydropteroate, the precursor of dihydrofolate. We were unable to obtain viable parasites where the dhps gene had been truncated. However, parasites where the protein was full-length but mutated at two key residues and having < 10% of normal activity were viable in folate-supplemented medium. Metabolic labelling showed that these parasites could still convert pABA to polyglutamated folates, albeit at a very low level, but they could not survive on pABA supplementation alone. This degree of disablement in DHPS also abolished the synergy of the antifolate combination pyrimethamine/sulfadoxine. These data indicate that DHPS activity above a low but critical level is essential regardless of the availability of salvageable folate and formally prove the role of this enzyme in antifolate drug synergy and folate biosynthesis in vivo. However, we found no evidence of a significant role for DHPS in folate salvage. Moreover, when biosynthesis was compromised by the absence of a fully functional DHPS, the parasite was able to compensate by increasing flux through the salvage pathway.  相似文献   
990.
Flounders offer unique opportunities to study the cytological basis of vertebrate pigmentation. Individual skin pigment cells are clearly visible at hatching, and flounder ontogeny includes a dramatic shift in overall pigmentation (from symmetrical to asymmetrical) during metamorphosis. Moreover, several types of malpigmentation occur in hatchery populations; although much effort has gone into reducing the frequency of such defects, their etiology remains poorly understood, and they have rarely been described at the cellular level. In this paper, we use light and fluorescence microscopy to describe the cytological basis of normal developmental changes and of common types of malpigmentation. We then discuss the implications of these observations for underlying patterning mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号