首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1629篇
  免费   155篇
  2023年   7篇
  2022年   13篇
  2021年   37篇
  2020年   18篇
  2019年   17篇
  2018年   27篇
  2017年   20篇
  2016年   43篇
  2015年   62篇
  2014年   76篇
  2013年   102篇
  2012年   120篇
  2011年   136篇
  2010年   86篇
  2009年   75篇
  2008年   109篇
  2007年   119篇
  2006年   97篇
  2005年   95篇
  2004年   90篇
  2003年   101篇
  2002年   65篇
  2001年   23篇
  2000年   22篇
  1999年   27篇
  1998年   16篇
  1997年   16篇
  1996年   5篇
  1995年   8篇
  1994年   10篇
  1993年   8篇
  1992年   13篇
  1991年   11篇
  1990年   7篇
  1989年   11篇
  1988年   4篇
  1987年   8篇
  1986年   7篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   4篇
  1970年   3篇
  1937年   3篇
排序方式: 共有1784条查询结果,搜索用时 15 毫秒
101.
Loss-of-function mutations of HASTY (HST) affect many different processes in Arabidopsis development. In addition to reducing the size of both roots and lateral organs of the shoot, hst mutations affect the size of the shoot apical meristem, accelerate vegetative phase change, delay floral induction under short days, adaxialize leaves and carpels, disrupt the phyllotaxis of the inflorescence, and reduce fertility. Double mutant analysis suggests that HST acts in parallel to SQUINT in the regulation of phase change and in parallel to KANADI in the regulation of leaf polarity. Positional cloning demonstrated that HST is the Arabidopsis ortholog of the importin beta-like nucleocytoplasmic transport receptors exportin 5 in mammals and MSN5 in yeast. Consistent with a potential role in nucleocytoplasmic transport, we found that HST interacts with RAN1 in a yeast two-hybrid assay and that a HST-GUS fusion protein is located at the periphery of the nucleus. HST is one of at least 17 members of the importin-beta family in Arabidopsis and is the first member of this family shown to have an essential function in plants. The hst loss-of-function phenotype suggests that this protein regulates the nucleocytoplasmic transport of molecules involved in several different morphogenetic pathways, as well as molecules generally required for root and shoot growth.  相似文献   
102.
This paper reports on a new role for mei-41 in cell cycle control during meiosis. This function is revealed by the requirement of mei-41 for the precocious anaphase observed in crossover-defective mutants. Normally in Drosophila oocytes, tension on the meiotic spindle causes a metaphase I arrest. This tension results because crossovers, and the resulting chiasmata, hold homologs together that are being pulled by kinetochore microtobules toward opposite spindle poles. In the absence of tension, such as in a recombination-defective mutant, metaphase arrest is not observed and meiosis proceeds through the two divisions. Here we show that in some recombination-defective mutants, the precocious anaphase requires the mei-41 gene product. For example, metaphase arrest is not observed in mei-218 mutants because of the severe reduction in crossing over. In mei-41 mei-218 double mutants, however, metaphase arrest was restored. The effect of mei-41 is dependent on double-strand break formation. Thus, in mutants that fail to initiate meiotic recombination the absence of mei-41 has no effect. Received: 15 October 1999; in revised form: 9 December 1999 / Accepted: 13 December 1999  相似文献   
103.
Walker MY  Hawley RS 《Chromosoma》2000,109(1-2):3-9
Homologous chromosomes initially undergo weak alignments that bring homologous sequences into register during meiosis. These alignments can be facilitated by two types of mechanisms: interstitial homology searches and telomere-telomere alignments. As prophase (and chromatin compaction) proceeds, these initial pairings or alignments need to be stabilized. In at least some organisms, such as Saccharomyces cerevisiae and S. pombe, these pairings can apparently be maintained by the creation of recombination intermediates. In contrast, synapsis during zygotene may be able to facilitate and/or maintain chromosome pairing even in the absence of exchange in several higher organisms. It thus seems possible that the synaptonemal complex plays a role both in maintaining homolog adhesion during meiotic prophase and, more speculatively, in facilitating meiotic exchange. Received: 15 November 1999; in revised form: 17 January 2000 / Accepted: 18 January 2000  相似文献   
104.
Nucleotide excision repair (NER) is the primary pathway for the removal of ultraviolet light-induced damage and bulky adducts from DNA in eukaryotes. During NER, the helix is unwound around the damaged site, and incisions are made on the 5' and 3' sides, to release an oligonucleotide carrying the lesion. Repair synthesis can then proceed, using the intact strand as a template. The incisions flanking the lesion are catalyzed by different structure-specific endonucleases. The 5' incision is made by a heterodimer of XPF and ERCC1 (Rad1p-Rad10p in Saccharomyces cerevisiae), and the 3' incision is made by XPG (Rad2p in S. cerevisiae). We previously showed that the Drosophila XPF homologue is encoded by the meiotic recombination gene mei-9. We report here the identification of the genes encoding the XPG and ERCC1 homologues (XPG(Dm) and ERCC1(Dm)). XPG(Dm) is encoded by the mus201 gene; we found frameshift mutations predicted to produce truncated XPG(Dm) proteins in each of two mus201 alleles. These mutations cause defects in nucleotide excision repair and hypersensitivity to alkylating agents and ultraviolet light, but do not cause hypersensitivity to ionizing radiation and do not impair viability or fertility. ERCC1(Dm) interacts strongly in a yeast two-hybrid assay with MEI-9, indicative of the presumed requirement for these polypeptides to dimerize to form the functional endonuclease. The Drosophila Ercc1 gene maps to polytene region 51D1-2. The nucleotide excision repair gene mus210 maps nearby (51E-F) but is distinct from Ercc1.  相似文献   
105.
Signals propagated via the gp130 subunit of the interleukin-6 (IL-6)-type cytokine receptors mediate, among various cellular responses, proliferation of hematopoietic cells and induction of acute-phase plasma protein (APP) genes in hepatic cells. Hematopoietic growth control by gp130 is critically dependent on activation of both STAT3 and protein tyrosine phosphatase 2 (SHP-2). To investigate whether induction of APP genes has a similar requirement for SHP-2, we constructed two chimeric receptors, G-gp130 and G-gp130(Y2F), consisting of the transmembrane and cytoplasmic domains of gp130 harboring either a wild-type or a mutated SHP-2 binding site, respectively, fused to the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor. Rat hepatoma H-35 cells stably expressing the chimeric receptors were generated by retroviral transduction. Both chimeric receptors transmitted a G-CSF-induced signal characteristic of that triggered by IL-6 through the endogenous gp130 receptor; i.e., both activated the appropriate JAK, induced DNA binding activity by STAT1 and STAT3, and up-regulated expression of the target APP genes, those for α-fibrinogen and haptoglobin. Notwithstanding these similarities in the patterns of signaling responses elicited, mutation of the SHP-2 interaction site in G-gp130(Y2F) abrogated ligand-activated receptor recruitment of SHP-2 as expected. Moreover, the tyrosine phosphorylation state of the chimeric receptor, the associated JAK activity, and the induced DNA binding activity of STAT1 and STAT3 were maintained at elevated levels and for an extended period of time in G-gp130(Y2F)-expressing cells following G-CSF treatment compared to that in cells displaying the G-gp130 receptor. H-35 cells ectopically expressing G-gp130(Y2F) were also found to display an enhanced sensitivity to G-CSF and a higher level of induction of APP genes. Overexpression of the enzymatically inactive SHP-2 enhanced the signaling by the wild-type but not by the Y2F mutant G-gp130 receptor. These results indicate that gp130 signaling for APP gene induction in hepatic cells differs qualitatively from that controlling the proliferative response in hematopoietic cells in not being strictly dependent on SHP-2. The data further suggest that SHP-2 functions normally to attenuate gp130-mediated signaling in hepatic (and, perhaps, other) cells by moderating JAK action.  相似文献   
106.
107.
Until recently, our understanding of the evolution of human growth and development derived from studies of fossil juveniles that employed extant populations for both age determination and comparison. This circular approach has led to considerable debate about the human-like and ape-like affinities of fossil hominins. Teeth are invaluable for understanding maturation as age at death can be directly assessed from dental microstructure, and dental development has been shown to correlate with life history across primates broadly. We employ non-destructive synchrotron imaging to characterize incremental development, molar emergence, and age at death in more than 20 Australopithecus anamensis, Australopithecus africanus, Paranthropus robustus and South African early Homo juveniles. Long-period line periodicities range from at least 6–12 days (possibly 5–13 days), and do not support the hypothesis that australopiths have lower mean values than extant or fossil Homo. Crown formation times of australopith and early Homo postcanine teeth fall below or at the low end of extant human values; Paranthropus robustus dentitions have the shortest formation times. Pliocene and early Pleistocene hominins show remarkable variation, and previous reports of age at death that employ a narrow range of estimated long-period line periodicities, cuspal enamel thicknesses, or initiation ages are likely to be in error. New chronological ages for SK 62 and StW 151 are several months younger than previous histological estimates, while Sts 24 is more than one year older. Extant human standards overestimate age at death in hominins predating Homo sapiens, and should not be applied to other fossil taxa. We urge caution when inferring life history as aspects of dental development in Pliocene and early Pleistocene fossils are distinct from modern humans and African apes, and recent work has challenged the predictive power of primate-wide associations between hominoid first molar emergence and certain life history variables.  相似文献   
108.
Understanding why animal societies take on the form that they do has benefited from insights gained by applying social network analysis to patterns of individual associations. Such analyses typically aggregate data over long time periods even though most selective forces that shape sociality have strong temporal elements. By explicitly incorporating the temporal signal in social interaction data we re-examine the network dynamics of the social systems of the evolutionarily closely-related Grevy’s zebras and wild asses that show broadly similar social organizations. By identifying dynamic communities, previously hidden differences emerge: Grevy’s zebras show more modularity than wild asses and in wild asses most communities consist of solitary individuals; and in Grevy’s zebras, lactating females show a greater propensity to switch communities than non-lactating females and males. Both patterns were missed by static network analyses and in general, adding a temporal dimension provides insights into differences associated with the size and persistence of communities as well as the frequency and synchrony of their formation. Dynamic network analysis provides insights into the functional significance of these social differences and highlights the way dynamic community analysis can be applied to other species.  相似文献   
109.
The NIH guidelines for survival bleeding of mice and rats note that using the retroorbital plexus has a greater potential for complications than do other methods of blood collection and that this procedure should be performed on anesthetized animals. Lateral saphenous vein puncture has a low potential for complications and can be performed without anesthesia. Mongolian gerbils (Meriones unguiculatus) are the preferred rodent model for filarial parasite research. To monitor microfilaria counts in the blood, blood sampling from the orbital plexus has been the standard. Our goal was to refine the blood collection technique. To determine whether blood collection from the lateral saphenous vein was a feasible alternative to retroorbital sampling, we compared microfilaria counts in blood samples collected by both methods from 21 gerbils infected with the filarial parasitic worm Brugia pahangi. Lateral saphenous vein counts were equivalent to retroorbital counts at relatively high counts (greater than 50 microfilariae per 20 µL) but were significantly lower than retroorbital counts when microfilarial concentrations were lower. Our results indicate that although retroorbital collection may be preferable when low concentrations of microfilariae need to be enumerated, the lateral saphenous vein is a suitable alternative site for blood sampling to determine microfilaremia and is a feasible refinement that can benefit the wellbeing of gerbils.Abbreviations: FR3, Filariasis Research Reagent Resource CenterLymphatic filariasis a major threat to human health worldwide. More than one billion people in more than 90 countries around the globe are at risk from lymphatic filariasis, and between 120 and 150 million people are infected.9,11,25 Infection with the filarioid parasitic worms Brugia malayi and Wuchereria bancrofti can result in severe sequelae, including elephantiasis and hydrocoele formation.3,11,15,25 In addition to the clinical manifestations of filariasis are the potential associated psychologic, social, and cultural effects in persons exhibiting visible signs of infection.9,23,34The life cycle of filarioid nematodes requires an arthropod intermediate host and a definitive vertebrate host. Within the definitive host, dioecious adult filarial nematodes reproduce sexually. Inseminated adult female worms then release live, sheathed microfilariae into the lymph that circulate in the peripheral blood.21 In the case of B. malayi and W. bancrofti, the intermediate host is the mosquito.21 When an uninfected mosquito ingests a blood meal from an infected human, ingested microfilariae unsheathe to penetrate the midgut of the mosquito to reach the thoracic muscles and molt twice, to become the infectious third-stage larvae. The third-stage larvae then migrate to the mosquito''s proboscis and can infect another human when the mosquito takes a blood meal.10,11 The third-stage larvae enter the new host''s lymphatic system which is their final location, where they undergo 2 molts into adults.Because of the complexity of filarioid life cycles, research involving these parasites can be logistically challenging. Although mice can be infected with W. bancrofti, they do not maintain the infection.35 Furthermore, there is no suitable nonhuman host that can maintain a patent infection, with the exception of the silvered leaf monkey (Trachypithecus cristatus).9 Because the closely related parasites B. malayi and B. pahangi have more extensive host ranges than does W. bancrofti, they are easier to maintain in a research setting. Domestic cats (Felis catus) can be experimentally infected with B. malayi and develop a patent infection, and both domestic cats and dogs (Canis familiaris) can be experimentally infected with B. pahangi13,29,37 and are suitable for obtaining microfilaremic blood for experimental feeding of mosquitoes. The Mongolian gerbil can be infected with B. pahangi. Because replacing a phylogenetically higher species with a lower species is preferable36 and because performing experiments involving dogs and cats can be logistically difficult and cost-prohibitive, many researchers prefer a rodent model, specifically gerbils.The Filariasis Research Reagent Resource Center (FR3) is an NIH center whose mandate is to support filariasis research worldwide. The FR3 provides parasitic and molecular resources, as well as training in animal procedures, to researchers from many nations. The FR3 maintains both B. malayi and B. pahangi, and researchers occasionally require gerbils with patent infections. Because the required level of microfilaria counts varies among investigators, an accurate microfilaria count must be obtained prior to the shipment of gerbils. For example, some experiments require that live mosquitoes feed directly on infected gerbils, and when the microfilaria level is too low, the mosquitoes do not become infected. Conversely when the level is too high, the migration of microfilariae and the later larval stages can kill the mosquitoes. Historically, the FR3 has used retroorbital sampling under general anesthesia to obtain the blood for microfilaria counts.28 Although this method has been fairly successful, the FR3 has encountered occasional complications secondary to the procedure, including exophthalmia and, rarely, death under anesthesia. The NIH guidelines for survival bleeding of mice and rats notes that compared with other blood collection methods, retroorbital sampling has a greater potential for complications. The guidelines recommend a 10- to 14-d period between retroorbital blood collections and state that the procedure is “…best conducted under general anesthesia.”31 By comparison, collecting blood from the lateral saphenous vein is considered to have a low potential for complications or tissue damage, can be performed without general anesthesia,12,18,31 and can be performed repeatedly, even daily.31In the current study, we proposed to refine the blood collection method being used by FR3 by developing sampling from the lateral saphenous vein as the new standard blood-collection method for monitoring microfilaremia. Our goal was to assess blood collection from the lateral saphenous vein as a feasible refinement technique to potentially replace retroorbital sampling by determining whether the microfilaria counts in blood collected from the lateral saphenous vein without anesthesia were sufficiently similar to those from retroorbital blood sampling with anesthesia to provide adequate information about the microfilaremia level.  相似文献   
110.
Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics.Lysine acetylation (Kac)1 is a well conserved, reversible post-translational modification (PTM) involved in multiple cellular processes (1). Acetylation is regulated by two classes of enzymes: lysine acetyltransferases (KATs) and histone deacetylases (HDACs) (24). This modification was originally identified as a nuclear event on histone proteins and has been long appreciated for its role in epigenetic and DNA-dependent processes. With the help of a growing number of large-scale acetylation studies, it has become evident that lysine acetylation is ubiquitous, also occurring on cytoplasmic and mitochondrial proteins and has a role in signaling, metabolism, and immunity (1, 46). Therefore, the examination of lysine acetylation on nonhistone proteins has gained a prominent role in PTM analysis.To date, the identification of large numbers of acetylation sites has been challenging because of the substoichiometric nature of this modification (7, 8). Additionally, global acetylation is generally less abundant than phosphorylation and ubiquitylation (1). The introduction of antibodies specific for lysine acetylation has significantly improved the ability to enrich and identify thousands of sites (914). A landmark study by Choudhary et al. used anti-Kac antibodies to globally map 3600 lysine acetylation sites on 1750 proteins, thereby demonstrating the feasibility of profiling the acetylome (10). A more recent study by Lundby et al. investigated the function and distribution of acetylation sites in 16 different rat tissues, and identified, in aggregate, 15,474 acetylation sites from 4541 proteins (12).Although anti-acetyl lysine antibodies have been a breakthrough for globally mapping acetylation sites (912), it remains a challenge to identify large numbers of lysine acetylation sites from a single sample, as is now routinely possible for phosphorylation and ubiquitylation (13, 1518). To improve the depth-of-coverage in acetylation profiling experiments there is a clear need for (1) alternative anti-acetyl lysine antibodies with higher specificity, (2) optimized antibody usage parameters, and (3) robust proteomic workflows that permit low to moderate protein input. In this study, we describe a newly commercialized mixture of anti-Kac antibodies and detail a complete proteomic workflow for achieving unprecedented coverage of the acetylome from a single stable isotope labeling by amino acids in cell culture (SILAC) labeled sample as well as isobaric tags for relative and absolute quantitation (iTRAQ)- and tandem mass tag (TMT)-labeled samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号