首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1780篇
  免费   167篇
  2023年   8篇
  2022年   23篇
  2021年   37篇
  2020年   23篇
  2019年   26篇
  2018年   28篇
  2017年   27篇
  2016年   36篇
  2015年   65篇
  2014年   72篇
  2013年   109篇
  2012年   126篇
  2011年   131篇
  2010年   92篇
  2009年   81篇
  2008年   124篇
  2007年   123篇
  2006年   103篇
  2005年   99篇
  2004年   93篇
  2003年   99篇
  2002年   71篇
  2001年   24篇
  2000年   23篇
  1999年   17篇
  1998年   21篇
  1997年   13篇
  1996年   11篇
  1995年   12篇
  1994年   11篇
  1993年   11篇
  1992年   14篇
  1991年   15篇
  1990年   18篇
  1989年   7篇
  1988年   8篇
  1987年   8篇
  1986年   10篇
  1984年   7篇
  1983年   7篇
  1982年   6篇
  1981年   5篇
  1976年   4篇
  1975年   7篇
  1974年   9篇
  1973年   7篇
  1972年   5篇
  1971年   9篇
  1969年   4篇
  1965年   4篇
排序方式: 共有1947条查询结果,搜索用时 156 毫秒
141.
The Ataxia-Telangiectasia mutated (ATM) kinase is regarded as the major regulator of the cellular response to DNA double strand breaks (DSBs). In response to DSBs, ATM dimers dissociate into active monomers in a process promoted by the Mre11-Rad50-Nbs1 (MRN) complex. ATM can also be activated by oxidative stress directly in the form of exposure to H2O2. The active ATM in this case is a disulfide-crosslinked dimer containing two or more disulfide bonds. Mutation of a critical cysteine residue in the FATC domain involved in disulfide bond formation specifically blocks ATM activation by oxidative stress. Here we show that ATM activation by DSB s is inhibited in the presence of H2O2 because oxidation blocks the ability of MRN to bind to DNA . However, ATM activation via direct oxidation by H2O2 complements the loss of MRN/DSB-dependent activation and contributes significantly to the overall level of ATM activity in the presence of both DSB s and oxidative stress.Key words: ATM, DNA repair, double-strand break, oxidative stress, ROS  相似文献   
142.
143.
This study identified major surface proteins of the plague bacterium Yersinia pestis. We applied a novel surface biotinylation method, followed by NeutrAvidin (NA) bead capture, on-bead digestion, and identification by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The use of stachyose during biotinylation focused the reaction to the surface. Coupled with NA pulldown and immunoblot analysis, this method determined whether a protein was accessible to the surface. We applied the method to test the hypothesis that the catalase KatY is a surface protein of the plague bacterium Y. pestis. A rabbit serum recognized the catalase KatY as a major putative outer membrane-associated antigen expressed by Y. pestis cells grown at 37 degrees C. Similar findings by other groups had led to speculations that this protein might be exposed to the surface and might be a candidate for evaluation as a protective antigen for an improved plague vaccine. KatY was obtained only in the total membrane fraction, and stachyose greatly reduced its biotinylation as well as that of the periplasmic maltose binding protein, indicating that KatY is not on the bacterial surface. LC-MS-MS analysis of on-bead digests representing ca. 10(9) cells identified highly abundant species, including KatY, Pal, and OmpA, as well as the lipoprotein Pcp, all of which bound in a biotin-specific manner. Pla, Lpp, and OmpX (Ail) bound to the NA beads in a non-biotin-specific manner. There was no contamination from abundant cytoplasmic proteins. We hypothesize that OmpX and Pcp are highly abundant and likely to be important for the Y. pestis pathogenic process. We speculate that a portion of KatY associates with the outer membrane in intact cells but that it is located on the periplasmic side. Consistent with this idea, it did not protect C57BL/6 mice against bubonic plague.  相似文献   
144.
Postprandial hypotension is an important clinical problem, particularly in the elderly. 5-Hydroxytryptamine3 (5-HT3) mechanisms may be important in the regulation of splanchnic blood flow and blood pressure (BP), and in mediating the effects of small intestinal nutrients on gastrointestinal motility. The aims of this study were to evaluate the effects of the 5-HT3 antagonist granisetron on the BP, heart rate (HR), and antropyloroduodenal (APD) motility responses to intraduodenal glucose in healthy older subjects. Ten subjects (5 male, 5 female, aged 65-76 yr) received an intraduodenal glucose infusion (3 kcal/min) for 60 min (t = 0-60 min), followed by intraduodenal saline for a further 60 min (t = 60-120 min) on 2 days. Granisetron (10 microg/kg) or control (saline) was given intravenously at t = -25 min. BP (systolic and diastolic), HR, and APD pressures were measured. Pressure waves in the duodenal channel closest ("local") to the infusion site were quantified separately. During intraduodenal glucose, there were falls in systolic and diastolic BP and a rise in HR (P < 0.0001 for all); granisetron had no effect on these responses. Granisetron suppressed the number and amplitude (P < 0.05 for both) of local duodenal pressures during intraduodenal glucose. Otherwise, the effects of intraduodenal glucose on APD motility did not differ between study days. We conclude that in healthy older subjects, 5-HT3 mechanisms modulate the local duodenal motor effects of, but not the cardiovascular responses to, small intestinal glucose.  相似文献   
145.
Endothelial cell junctional adhesion molecule (JAM)-C has been proposed to regulate neutrophil migration. In the current study, we used function-blocking mAbs against human JAM-C to determine its role in human leukocyte adhesion and transendothelial cell migration under flow conditions. JAM-C surface expression in HUVEC was uniformly low, and treatment with inflammatory cytokines TNF-alpha, IL-1beta, or LPS did not increase its surface expression as assessed by FACS analysis. By immunofluorescence microscopy, JAM-C staining showed sparse localization to cell-cell junctions on resting or cytokine-activated HUVEC. Surprisingly, staining of detergent-permeabilized HUVEC revealed a large intracellular pool of JAM-C that showed little colocalization with von Willebrand factor. Adhesion studies in an in vitro flow model showed that functional blocking JAM-C mAb alone had no inhibitory effect on polymorphonuclear leukocyte (PMN) adhesion or transmigration, whereas mAb to ICAM-1 significantly reduced transmigration. Interestingly, JAM-C-blocking mAbs synergized with a combination of PECAM-1, ICAM-1, and CD99-blocking mAbs to inhibit PMN transmigration. Overexpression of JAM-C by infection with a lentivirus JAM-C GFP fusion protein did not increase adhesion or extent of transmigration of PMN or evoke a role for JAM-C in transendothelial migration. These data suggest that JAM-C has a minimal role, if any, in PMN transmigration in this model and that ICAM-1 is the preferred endothelial-expressed ligand for PMN beta(2) integrins during transendothelial migration.  相似文献   
146.
The clones generated in a sequencing project represent a resource for subsequent analysis of the organism whose genome has been sequenced. We describe an interrelated group of cloning vectors that either integrate into the genome or replicate, and that enhance the utility, for developmental and other studies, of the clones used to determine the genomic sequence of the cyanobacterium, Anabaena sp. strain PCC 7120. One integrating vector is a mobilizable BAC vector that was used both to generate bridging clones and to complement transposon mutations. Upon addition of a cassette that permits mobilization and selection, pUC-based sequencing clones can also integrate into the genome and thereupon complement transposon mutations. The replicating vectors are based on cyanobacterial plasmid pDU1, whose sequence we report, and on broad-host-range plasmid RSF1010. The RSF1010- and pDU1-based vectors provide the opportunity to express different genes from either cell-type-specific or -generalist promoters, simultaneously from different plasmids in the same cyanobacterial cells. We show that pDU1 ORF4 and its upstream region play an essential role in the replication and copy number of pDU1, and that ORFs alr2887 and alr3546 (hetF A ) of Anabaena sp. are required specifically for fixation of dinitrogen under oxic conditions.  相似文献   
147.
Modern micro-computed tomography techniques allow the accurate visualization of internal dental structures, and are becoming widely used within (paleo-) anthropological dental studies. There exist several types and name brands of microtomographic systems, however, which have been demonstrated to produce images that vary in resolution and signal-to-noise ratio. As a growing body of dental research using disparate microtomographic techniques is likely to continue accumulating, it is imperative that different systems are compared to ensure that results are comparable and not machine-dependent. In the present study, we compare volume, surface area, and linear measurements recorded on a sample of modern and fossil teeth using four microtomographic systems (three laboratory scanners, and the ID19 beamline of the European Synchrotron Radiation Facility). Results indicate that measurements are comparable between systems (within 3%), but that synchrotron radiation is superior to the other systems because its monochromatic X-rays prevent beam hardening and its parallel beam prevents geometric artifacts in the resultant images, making it easier to record measurements and see fine details at the enamel cervix or dentine horn tips. Although the synchrotron produces higher resolution images with less artifacts, results indicate that for gross morphological measurements (e.g., enamel cap volume, intercuspal distances), each of the scanners produces approximately the same measurements. Combining measurements of teeth from multiple microCT systems presupposes that measurements from each system are comparable; the research presented here indicates that this is the case when teeth are not severely diagenetically remineralized.  相似文献   
148.
Thermodynamic benchmark study using Biacore technology   总被引:1,自引:0,他引:1  
A total of 22 individuals participated in this benchmark study to characterize the thermodynamics of small-molecule inhibitor-enzyme interactions using Biacore instruments. Participants were provided with reagents (the enzyme carbonic anhydrase II, which was immobilized onto the sensor surface, and four sulfonamide-based inhibitors) and were instructed to collect response data from 6 to 36 degrees C. van't Hoff enthalpies and entropies were calculated from the temperature dependence of the binding constants. The equilibrium dissociation and thermodynamic constants determined from the Biacore analysis matched the values determined using isothermal titration calorimetry. These results demonstrate that immobilization of the enzyme onto the sensor surface did not alter the thermodynamics of these interactions. This benchmark study also provides insights into the opportunities and challenges in carrying out thermodynamic studies using optical biosensors.  相似文献   
149.
Mycobacterium tuberculosis utilizes the methylerythritol phosphate (MEP) pathway for biosynthesis of isopentenyl diphosphate and its isomer, dimethylallyl diphosphate, precursors of all isoprenoid compounds. This pathway is of interest as a source of new drug targets, as it is absent from humans and disruption of the responsible genes has shown a lethal phenotype for Escherichia coli. In the MEP pathway, 4-diphosphocytidyl-2-C-methyl-D-erythritol is formed from 2-C-methyl-D-erythritol 4-phosphate (MEP) and CTP in a reaction catalyzed by a 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD). In the present work, we demonstrate that Rv3582c is essential for M. tuberculosis: Rv3582c has been cloned and expressed, and the encoded protein has been purified. The purified M. tuberculosis IspD protein was capable of catalyzing the formation of 4-diphosphocytidyl-2-C-methyl-D-erythritol in the presence of MEP and CTP. The enzyme was active over a broad pH range (pH 6.0 to 9.0), with peak activity at pH 8.0. The activity was absolutely dependent upon divalent cations, with 20 mM Mg2+ being optimal, and replacement of CTP with other nucleotide 5'-triphosphates did not support activity. Under the conditions tested, M. tuberculosis IspD had Km values of 58.5 microM for MEP and 53.2 microM for CTP. Calculated kcat and kcat/Km values were 0.72 min(-1) and 12.3 mM(-1) min(-1) for MEP and 1.0 min(-1) and 18.8 mM(-1) min(-1) for CTP, respectively.  相似文献   
150.
We have identified 24 members of the DnaK subfamily of heat shock 70 proteins (Hsp70s) in the complete genomes of 5 diverse photosynthetic eukaryotes. The Hsp70s are a ubiquitous protein family that is highly conserved across all domains of life. Eukaryotic Hsp70s are found in a number of subcellular compartments in the cell: cytoplasm, mitochondrion (MT), chloroplast (CP), and endoplasmic reticulum (ER). Although the Hsp70s have been the subject of intense study in model organisms, very little is known of the Hsp70s from early diverging photosynthetic lineages. The sequencing of the complete genomes of Thalassiosira pseudonana (a diatom), Cyanidioschyzon merolae (a red alga), and 3 green algae (Chlamydomonas reinhardtii, Ostreococcus lucimarinus, Ostreococcus tauri) allow us to conduct comparative genomics of the Hsp70s present in these diverse photosynthetic eukaryotes. We have found that the distinct lineages of Hsp70s (MT, CP, ER, and cytoplasmic) each have different evolutionary histories. In general, evolutionary patterns of the mitochondrial and endoplasmic reticulum Hsp70s are relatively stable even among very distantly related organisms. This is not true of the chloroplast Hsp70s and we discuss the distinct evolutionary patterns between "green" and "red" plastids. Finally, we find that, in contrast to the angiosperms Arabidopsis thaliana and Oryza sativa that have numerous cytoplasmic Hsp70, the 5 algal species have only 1 cytoplasmic Hsp70 each. The evolutionary and functional implications of these differences are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号