首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1294篇
  免费   107篇
  国内免费   1篇
  1402篇
  2023年   10篇
  2022年   12篇
  2021年   26篇
  2019年   22篇
  2018年   27篇
  2017年   19篇
  2016年   23篇
  2015年   51篇
  2014年   62篇
  2013年   85篇
  2012年   94篇
  2011年   85篇
  2010年   53篇
  2009年   47篇
  2008年   76篇
  2007年   69篇
  2006年   77篇
  2005年   48篇
  2004年   49篇
  2003年   32篇
  2002年   34篇
  2001年   23篇
  2000年   29篇
  1999年   29篇
  1998年   14篇
  1997年   15篇
  1996年   13篇
  1995年   13篇
  1994年   16篇
  1993年   10篇
  1992年   25篇
  1991年   16篇
  1990年   18篇
  1989年   15篇
  1988年   11篇
  1985年   8篇
  1983年   11篇
  1982年   6篇
  1979年   6篇
  1977年   8篇
  1976年   6篇
  1975年   8篇
  1974年   7篇
  1973年   7篇
  1972年   11篇
  1971年   9篇
  1970年   6篇
  1969年   7篇
  1967年   6篇
  1966年   9篇
排序方式: 共有1402条查询结果,搜索用时 0 毫秒
71.
Breast epithelial cells differentiate into tubules when cultured in floating three-dimensional (3D) collagen gels, but not when the cells are cultured in the same collagen matrix that is attached to the culture dish. These observations suggest that the biophysical properties of collagenous matrices regulate epithelial differentiation, but the mechanism by which this occurs is unknown. Tubulogenesis required the contraction of floating collagen gels through Rho and ROCK-mediated contractility. ROCK-mediated contractility diminished Rho activity in a floating 3D collagen gel, and corresponded to a loss of FAK phosphorylated at Y397 localized to 3D matrix adhesions. Increasing the density of floating 3D collagen gels also disrupted tubulogenesis, promoted FAK phosphorylation, and sustained high Rho activity. These data demonstrate the novel finding that breast epithelial cells sense the rigidity or density of their environment via ROCK-mediated contractility and a subsequent down-regulation of Rho and FAK function, which is necessary for breast epithelial tubulogenesis to occur.  相似文献   
72.
Desai C  Purdy J 《Genetics》2003,164(2):575-588
We have isolated and characterized a series of 18 chemically induced alleles of Ptp69D ranging in strength from viable to worse than null, which represent unique tools for probing the structure, function, and signaling pathway of DPTP69D. Three alleles are strongly temperature sensitive and were used to define the developmental periods requiring DPTP69D function; adult health requires DPTP69D during the mid- to late-pupal stage, eclosion requires DPTP69D during the early to mid-larval stage, and larval survival requires DPTP69D during embryogenesis. Mutations predicted to abolish the phosphatase activity of the membrane proximal D1 domain severely reduce but do not abolish DPTP69D function. Six alleles appear null; only 20% of null homozygotes pupate and <5% eclose, only to fall into the food and drown. One allele, Ptp69D(7), confers axon and viability defects more severe than those of the null phenotype. Sequence analysis predicts that Ptp69D(7) encodes a mutant protein that may bind but not release substrate. Like mutations in the protein tyrosine phosphatase gene Dlar, strong Ptp69D alleles cause the ISNb nerve to bypass its muscle targets. Genetic analysis reveals that the bypass defect in Dlar and Ptp69D mutants is dependent upon DPTP99A function, consistent with the hypothesis that DPTP69D and DLAR both counteract DPTP99A, allowing ISNb axons to enter their target muscle field.  相似文献   
73.
The purpose of the present study was to investigate the prognostic significance of DNA ploidy, S-phase fraction and p21 ras oncoprotein expression in patients with colorectal cancer and to correlate these factors with the clinical behavior of the tumors and their response to therapy. Of 79 patients with colorectal cancer 57% (45/79) had early stage disease. Forty-one percent (32/79) had aneuploid tumors while 30% (24/79) of the tumors had a high (>10%) S-phase fraction. p21ras oncoprotein expression was detected in 38% (30/79) of tumors. Patients with aneuploid tumors had a worse prognosis than patients with diploid tumors (p=0.0002). Similarly, patients with high S-phase fraction tumors had a shorter survival than those with low S-phase fraction tumors (p=0.005). No such difference was found between p21 raspositive and p21 ras-negative tumor subgroups. In early stage colorectal cancer, aneuploidy was closely correlated with disease outcome (p=0.029). Early stage patients with diploid tumors who received radiotherapy and chemotherapy had a better prognosis than patients with aneuploid tumors. In conclusion, DNA ploidy is a significant and independent prognostic factor in colorectal cancer. Aneuploidy and genetic alteration of the p21 ras oncoprotein are important in determining the biological aggressiveness of colorectal cancer. Furthermore, DNA ploidy may identify those subgroups of patients with early stage disease who may benefit from more aggressive treatment.  相似文献   
74.
Phospholipase C-gamma (PLC-gamma) is stimulated by epidermal growth factor via activation of the epidermal growth factor receptors. The PLC inhibitor, 3-nitrocoumarin (3-NC), selectively inhibited PLC-gamma in Madin-Darby canine kidney cells without affecting the activity of PLC-beta. In contrast, inhibitors of PLC-beta, hexadecylphosphocholine and, had no effect on the activity of PLC-gamma. Inhibition of PLC-gamma by 3-NC was associated with an increase in tight junction permeability across Madin-Darby canine kidney cell monolayers, as evidenced by 3-NC-induced decrease in transepithelial electrical resistance and increase in mannitol flux over a concentration range that was inhibitory to PLC-gamma. An analog of 3-NC, 7-hydroxy-3-NC (7-OH-3-NC), which was inactive as an inhibitor of PLC-gamma, also had no effect on tight junction permeability. Treatment with 3-NC caused punctate disruption in the cortical actin filaments. The PLC-gamma inhibitor, 3-NC, but not the inactive analog, 7-OH-3-NC, caused hyperphosphorylation of the tight junction proteins, occludin, ZO-1, and ZO-2. The serine/threonine kinase inhibitor, staurosporine (50-200 nm), significantly attenuated 3-NC-induced hyperphosphorylation of ZO-2. This corresponded with attenuation by staurosporine of 3-NC-induced increase in tight junction permeability, suggesting a relationship between ZO-2 phosphorylation and tight junction permeability.  相似文献   
75.
Murine sclerodermatous graft-vs-host disease (Scl GVHD) models human scleroderma, with prominent skin thickening, lung fibrosis, and up-regulation of cutaneous collagen mRNA. Fibrosis in Scl GVHD may be driven by infiltrating TGF-beta1-producing mononuclear cells. Here we characterize the origin and types of those cutaneous effector cells, the cytokine and chemokine environments, and the effects of anti-TGF-beta Ab on skin fibrosis, immune cell activation markers, and collagen and cytokine synthesis. Donor cells infiltrating skin in Scl GVHD increase significantly at early time points post-transplantation and are detectable by PCR analysis of Y-chromosome sequences when female mice are transplanted with male cells. Cutaneous monocyte/macrophages and T cells are the most numerous cells in Scl GVHD compared with syngeneic controls. These immune cells up-regulate activation markers (MHC class II I-A(d) molecules and class A scavenger receptors), suggesting Ag presentation by cutaneous macrophages in early fibrosing disease. Early elevated cutaneous mRNA expression of TGF-beta1, but not TGF-beta2 or TGF-beta3, and elevated C-C chemokines macrophage chemoattractant protein-1, macrophage inflammatory protein-1alpha, and RANTES precede subsequent skin and lung fibrosis. Therefore, TGF-beta1-producing donor mononuclear cells may be critical effector cells, and C-C chemokines may play important roles in the initiation of Scl GVHD. Abs to TGF-beta prevent Scl GVHD by effectively blocking the influx of monocyte/macrophages and T cells into skin and by abrogating up-regulation of TGF-beta1, thereby preventing new collagen synthesis. The Scl GVHD model is valuable for testing new interventions in early fibrosing diseases, and chemokines may be new potential targets in scleroderma.  相似文献   
76.
Formulation of drugs for administration via the nasal cavity is becoming increasingly common. It is of potential clinical relevance to determine whether intranasal drug administration itself, or exposure to other xenobiotics, can modulate the levels and/or activity of nasal mucosal metabolic enzymes, thereby affecting the metabolism and disposition of the drug. In these studies, we examined changes in several of the major metabolic enzymes in nasal epithelial tissues upon exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), as well as the impact of these changes on the metabolism of a model intranasally administered drug, lidocaine. Results of these studies show that TCDD can induce multiple metabolic enzymes in the olfactory mucosa and that the pattern of induction in the olfactory mucosa does not necessarily parallel that which occurs in the liver. Further, increases in enzyme levels noted by Western blot analysis were associated with increased activities of several nasal mucosal enzymes as well as with enhanced conversion of lidocaine to its major metabolite, monoethyl glycine xylidide (MEGX). These results demonstrate that environmental exposures can influence the levels and activity of nasal mucosal enzymes and impact the pharmacology of drugs administered via the nasal route.  相似文献   
77.
We have recently shown that the physiological mediator of granule-mediated apoptosis is a macromolecular complex of granzymes and perforin complexed with the chondroitin-sulfate proteoglycan, serglycin (Metkar, S. S., Wang, B., Aguilar-Santelises, M., Raja, S. M., Uhlin-Hansen, L., Podack, E., Trapani, J. A., and Froelich, C. J. (2002) Immunity 16, 417-428). We now report our biophysical studies establishing the nature of granzyme B-serglycin (GrB.SG) complex. Dynamic laser light scattering studies establish that SG has a hydrodynamic radius of approximately 140 +/- 23 nm, comparable to some viral particles. Agarose mobility shift gels and surface plasmon resonance (SPR), show that SG binds tightly to GrB and has the capacity to hold 30-60 GrB molecules. SPR studies also indicate equivalent binding affinities (K(d) approximately 0.8 microm), under acidic (granule pH) and neutral isotonic conditions (extra-cytoplasmic pH), for GrB.SG interaction. Finally, characterization of GrB.SG interactions within granules revealed complexes of two distinct molecular sizes, one held approximately 4-8 molecules of GrB, whereas the other contained as many as 32 molecules of GrB or other granule proteins. These studies provide a firm biophysical basis for our earlier reported observations that the proapoptotic granzyme is exocytosed predominantly as a macromolecular complex with SG.  相似文献   
78.
Regions of extremely high sequence identity are recurrent in modular polyketide synthase (PKS) genes. Such sequences are potentially detrimental to the stability of PKS expression plasmids used in the combinatorial biosynthesis of polyketide metabolites. We present two different solutions for circumventing intra-plasmid recombination within the megalomicin PKS genes in Streptomyces coelicolor. In one example, a synthetic gene was used in which the codon usage was reengineered without affecting the primary amino acid sequence. The other approach utilized a heterologous subunit complementation strategy to replace one of the problematic regions. Both methods resulted in PKS complexes capable of 6-deoxyerythronolide B analogue biosynthesis in S. coelicolor CH999, permitting reproducible scale-up to at least 5-l stirred-tank fermentation and a comparison of diketide precursor incorporation efficiencies between the erythromycin and megalomicin PKSs. Electronic Publication  相似文献   
79.
During early stages of cerebral cortical development, progenitor cells in the ventricular zone are multipotent, producing neurons of many layers over successive cell divisions. The laminar fate of their progeny depends on environmental cues to which the cells respond prior to mitosis. By the end of neurogenesis, however, progenitors are lineally committed to producing upper-layer neurons. Here we assess the laminar fate potential of progenitors at a middle stage of cortical development. The progenitors of layer 4 neurons were first transplanted into older brains in which layer 2/3 was being generated. The transplanted neurons adopted a laminar fate appropriate for the new environment (layer 2/3), revealing that layer 4 progenitors are multipotent. Mid-stage progenitors were then transplanted into a younger environment, in which layer 6 neurons were being generated. The transplanted neurons bypassed layer 6, revealing that layer 4 progenitors have a restricted fate potential and are incompetent to respond to environmental cues that trigger layer 6 production. Instead, the transplanted cells migrated to layer 4, the position typical of their origin, and also to layer 5, a position appropriate for neither the host nor the donor environment. Because layer 5 neurogenesis is complete by the stage that progenitors were removed for transplantation, restrictions in laminar fate potential must lag behind the final production of a cortical layer. These results suggest that a combination of intrinsic and environmental cues controls the competence of cortical progenitor cells to produce neurons of different layers.  相似文献   
80.
The anti-human leukocyte antigen (HLA) class I monoclonal antibody (mAb) TP25.99 has a unique specificity since it recognizes both a conformational and a linear determinant expressed on the beta(2)-mu-associated and beta(2)-mu-free HLA class I heavy chains, respectively. Previously, we reported the identification of a cyclic and a linear peptide that inhibits mAb TP25.99 binding to the beta(2)-mu-associated and beta(2)-mu-free HLA class I heavy chains (S. A. Desai, X. Wang, E. J. Noronha, Q. Zhou, V. Rebmann, H. Grosse-Wilde, F. J. Moy, R. Powers, and S. Ferrone, submitted for publication). The linear X(19) and cyclic LX-8 peptides contain sequence homologous to residues 239-242, 245, and 246 and to residues 194-198, respectively, of HLA class I heavy chain alpha(3) domain. Analysis by two-dimensional transfer nuclear Overhauser effect spectroscopy of the induced solution structures of the linear X(19) and cyclic LX-8 peptides in the presence of mAb TP25.99 showed that the two peptides adopt a similar structural motif despite the lack of sequence homology. The backbone fold is suggestive of a short helical segment followed by a tight turn, reminiscent of the determinant loop region (residues 194-198) on beta(2)-mu-associated HLA class I heavy chains. The structural similarity between the linear X(19) and cyclic LX-8 peptides and the lack of sequence homology suggests that mAb TP25.99 predominantly recognizes a structural motif instead of a consensus sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号