首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   11篇
  2022年   6篇
  2021年   8篇
  2020年   4篇
  2019年   5篇
  2018年   11篇
  2017年   12篇
  2016年   8篇
  2015年   15篇
  2014年   13篇
  2013年   13篇
  2012年   25篇
  2011年   25篇
  2010年   10篇
  2009年   14篇
  2008年   29篇
  2007年   23篇
  2006年   20篇
  2005年   17篇
  2004年   12篇
  2003年   17篇
  2002年   16篇
  2001年   14篇
  2000年   5篇
  1999年   1篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有378条查询结果,搜索用时 15 毫秒
101.
Vigna subgenus Ceratotropis (V. angularis, V. minima, V. nakashimae, V. reflexo-pilosa, V. riukiuensis and V. umbellata) was investigated using AFLP methodology. Species in the V. minima complex, V. minima, V. nakashimae and V. riukiuensis, had greater intra-specific polymorphism than the other species analyzed. Vigna species from East Asia analysed could be clearly distinguished. The relationship between species was consistent using different analyses and showed V. riukiuensis and V. nakashimae are closely related. The phenetic distance between species (1-Jaccard's similarity coefficient) ranged from 0.279 between V. riukiuensis and V. nakashimae to 0.688 between V. reflexo-pilosa and V. minima. Genetic distance based on inferred nucleotide diversity (π) ranged from 0.012 between V. riukiuensis and V. nakashimae and 0.053 between both V. riukiuensis and V. nakashimae and V. reflexo-pilosa. The diversity (Ha) within species, based on Shannon's information index of phenotypic diversity, was lowest in V. reflexo-pilosa (0.006) and highest in V. minima (0.095). Korean and Japanese populations of V. nakashimae had distinct polymorphism. Vigna riukiuensis populations from Miyako island were genetically different from populations of other islands of southern Okinawa. Received 21 April 2000/ Accepted in revised form 5 September 2000  相似文献   
102.
Summary We examined the association between glycoprotein (GP) IIb/IIIa, a receptor for fibrinogen, and membrane skeletons in both unstimulated and thrombin-activated human platelets. After a treatment with dithiobis succinimidyl propionate (DTSP), a cross-linker, unstimulated and activated platelets were simultaneously extracted and fixed with a fixing solution containing Triton X-100. Also, the localization of GPIIb/IIIa on the plasma membrane was observed by a preembedding staining method of unextracted platelets. In unstimulated platelets, 20–40% of the whole plasma membrane remained in the detergent-extracted samples. Amorphous structures with 10–70 nm in diameters are distributed at 20 to 100-nm intervals on the surface of plasma membrane. Similar structures also were identified in the intact platelets by the immunocytochemical method. By careful inspection, we found that most of the amorphous structures that contained gold particles were connected to the submembrane zone just beneath the plasma membrane. The submembrane zone was identified as the membrane skeleton because actin was detected in the zone. After activation, detergent-insoluble granules were surrounded by dense networks of microfilaments in the central part of platelets. The filaments were identified as actin and became associated with myosin. These results demonstrate that GPIIb/IIIa on the plasma membrane is connected to the membrane skeleton and suggest that, during activation, actin filaments which extend into the cytoplasm from the membrane skeleton increase and form dense networks around Triton-insoluble granules.  相似文献   
103.
The origin of taxa presenting a disjunct distribution between Africa and Asia has puzzled biogeographers for more than a century. This biogeographic pattern has been hypothesized to be the result of transoceanic long‐distance dispersal, Oligocene dispersal through forested corridors, Miocene dispersal through the Arabian Peninsula or passive dispersal on the rifting Indian plate. However, it has often been difficult to pinpoint the mechanisms at play. We investigate biotic exchange between the Afrotropics and the Oriental region during the Cenozoic, a period in which geological changes altered landmass connectivity. We use Baorini skippers (Lepidoptera, Hesperiidae) as a model, a widespread clade of butterflies in the Old World tropics with a disjunct distribution between the Afrotropics and the Oriental region. We use anchored phylogenomics to infer a robust evolutionary tree for Baorini skippers and estimate divergence times and ancestral ranges to test biogeographic hypotheses. Our phylogenomic tree recovers strongly supported relationships for Baorini skippers and clarifies the systematics of the tribe. Dating analyses suggest that these butterflies originated in the Oriental region, Greater Sunda Islands, and the Philippines in the early Miocene c. 23 Ma. Baorini skippers dispersed from the Oriental region towards Africa at least five times in the past 20 Ma. These butterflies colonized the Afrotropics primarily through trans‐Arabian geodispersal after the closure of the Tethyan seaway in the mid‐Miocene. Range expansion from the Oriental region towards the African continent probably occurred via the Gomphotherium land bridge through the Arabian Peninsula. Alternative scenarios invoking long‐distance dispersal and vicariance are not supported. The Miocene climate change and biome shift from forested areas to grasslands possibly facilitated geodispersal in this clade of butterflies.  相似文献   
104.
Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on mesenchymal stem cell migration.  相似文献   
105.
106.

Background

C-reactive protein (CRP) is a predictor of cardiovascular risk. It circulates as a pentameric protein in plasma. Recently, a potential dissociation mechanism from the disc-shaped pentameric CRP (pCRP) into single monomers (monomeric or mCRP) has been described. It has been shown that mCRP has strong pro-inflammatory effects on monocytes. To further define the role of mCRP in determining monocyte phenotype, the effects of CRP isoforms on THP-1 protein expression profiles were determined. The hypothesis to be tested was that mCRP induces specific changes in the protein expression profile of THP-1 cells that differ from that of pCRP.

Methods

Protein cell lysates from control and mCRP, pCRP or LPS-treated THP-1 cells were displayed using 2-dimensional SDS PAGE and compared. Differentially expressed proteins were identified by MALDI-TOF MS and confirmed by Western blotting.

Results

mCRP significantly up-regulates ubiquitin-activating enzyme E1, a member of the ubiquitin-proteasome system in THP-1 monocytes. Furthermore, HSP 70, alpha-actinin-4 (ACTN4) and alpha-enolase/enolase 1 were upregulated. The proteomic profile of LPS and pCRP treated monocytes differ significantly from that of mCRP.

Conclusion

The data obtained in this study support the hypothesis that isoform-specific effects of CRP may differentially regulate the phenotype of monocytes.  相似文献   
107.
108.
During development of the peripheral nervous system (PNS), Schwann cells migrate along neuronal axons before initiating myelination of the axons. While intercellular signals controlling migration, between Schwann cells and peripheral neurons, are established, how their intracellular transduction of the signals into Schwann cells still remains to be clarified. Here, we show that cytohesin-1, a guanine-nucleotide exchange factor (GEF), and the effector Arf6 are required for migration of primary Schwann cells. Knockdown of cytohesin-1 or Arf6 in Schwann cells, as well as treatment with the chemical cytohesin inhibitor SecinH3 or knockout of cytohesin-1, inhibits peripheral neuronal conditioned medium-mediated migration. Similar effects are also observed following stimulation with each of growth factors contained in a conditioned medium, suggesting that cytohesin-1 plays a role in transducing soluble ligand signals from neurons. Reintroduction of small interfering (si)RNA-resistant cytohesin-1 into Schwann cells reverses blunted migration in the siRNA-transfected Schwann cells, illustrating the importance of cytohesin-1 in migration. On the other hand, introduction of cytohesin-1 that harbors the Tyr-382 mutation, which is an amino acid that is important for its activation, failed to reverse the reduction in primary Schwann cell migration. These results suggest that signaling through cytohesin-1 is required for Schwann cell migration, revealing a novel mechanism for Schwann cell migration.  相似文献   
109.
Rho-kinase-mediated vasoconstriction and endothelial dysfunction are considered two primary instigators of pulmonary arterial hypertension (PAH). However, their contribution to the adverse changes in pulmonary blood flow distribution associated with PAH has not been addressed. This study utilizes synchrotron radiation microangiography to assess the specific role, and contribution of, Rho-kinase-mediated vasoconstriction and endothelial dysfunction in PAH. Male adult Sprague-Dawley rats were injected with saline (Cont-rats) or monocrotaline (MCT-rats) 3 wk before microangiography was performed on the left lung. We assessed dynamic changes in vessel internal diameter (ID) in response to 1) the Rho-kinase inhibitor fasudil (10 mg/kg iv); or 2) ACh (3 μg · kg?1 · min?1), sodium nitroprusside (SNP, 5 μg · kg?1 · min?1), and N(ω)-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg iv). We observed that MCT-rats had fewer vessels of the microcirculation compared with Cont-rats. The fundamental result of this study is that fasudil improved pulmonary blood flow distribution and reduced pulmonary pressure in PAH rats, not only by dilating already-perfused vessels (ID > 100 μm), but also by restoring blood flow to vessels that had previously been constricted closed (ID < 100 μm). Endothelium-dependent vasodilation was impaired in MCT-rats primarily in vessels with an ID < 200 μm. Moreover the vasoconstrictor response to l-NAME was accentuated in MCT-rats, but only in the 200- to 300-μm vessels. These results highlight the importance of Rho-kinase-mediated control and endothelial control of pulmonary vascular tone in PAH. Indeed, an effective therapeutic strategy for treating PAH should target both the smooth muscle Rho-kinase and endothelial pathways.  相似文献   
110.
The gene cluster involved in producing the cyclic heptadepsipeptide micropeptin was cloned from the genome of the unicellular cyanobacterium Microcystis aeruginosa K-139. Sequencing revealed four genes encoding non-ribosomal peptide synthetases (NRPSs) that are highly similar to the gene cluster involved in cyanopeptolins biosynthesis. According to predictions based on the non-ribosomal consensus code, the order of the mcnABCE NPRS modules was well consistent with that of the biosynthetic assembly of cyclic peptides. The biochemical analysis of a McnB(K-139) adenylation domain and the knock-out of mcnC in a micropeptin-producing strain, M. viridis S-70, revealed that the mcn gene clusters were responsible for the production of heptadepsipeptide micropeptins. A detailed comparison of nucleotide sequences also showed that the regions between the mcnC and mcnE genes of M. aeruginosa K-139 retained short stretches of DNA homologous to halogenase genes involved in the synthesis of halogenated cyclic peptides of the cyanopeptolin class including anabaenopeptilides. This suggests that the mcn clusters of M. aeruginosa K-139 have lost the halogenase genes during evolution. Finally, a comparative bioinformatics analysis of the congenial gene cluster for depsipetide biosynthesis suggested the diversification and propagation of the NRPS genes in cyanobacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号