首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   25篇
  国内免费   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   8篇
  2008年   5篇
  2006年   8篇
  2005年   11篇
  2004年   5篇
  2003年   5篇
  2002年   8篇
  2001年   4篇
  2000年   9篇
  1999年   5篇
  1998年   6篇
  1997年   7篇
  1996年   15篇
  1995年   12篇
  1994年   12篇
  1993年   18篇
  1992年   10篇
  1991年   12篇
  1990年   4篇
  1989年   7篇
  1988年   11篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
91.
92.
93.
The SOL Genomics Network (SGN; http://sgn.cornell.edu) is a rapidly evolving comparative resource for the plants of the Solanaceae family, which includes important crop and model plants such as potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), and tomato (Solanum lycopersicum). The aim of SGN is to relate these species to one another using a comparative genomics approach and to tie them to the other dicots through the fully sequenced genome of Arabidopsis (Arabidopsis thaliana). SGN currently houses map and marker data for Solanaceae species, a large expressed sequence tag collection with computationally derived unigene sets, an extensive database of phenotypic information for a mutagenized tomato population, and associated tools such as real-time quantitative trait loci. Recently, the International Solanaceae Project (SOL) was formed as an umbrella organization for Solanaceae research in over 30 countries to address important questions in plant biology. The first cornerstone of the SOL project is the sequencing of the entire euchromatic portion of the tomato genome. SGN is collaborating with other bioinformatics centers in building the bioinformatics infrastructure for the tomato sequencing project and implementing the bioinformatics strategy of the larger SOL project. The overarching goal of SGN is to make information available in an intuitive comparative format, thereby facilitating a systems approach to investigations into the basis of adaptation and phenotypic diversity in the Solanaceae family, other species in the Asterid clade such as coffee (Coffea arabica), Rubiaciae, and beyond.  相似文献   
94.
fw2.2 is a quantitative trait locus responsible for approximately 30% of the difference in fruit size between large, domesticated tomatoes (Lycopersicon esculentum Mill.) and their small-fruited wild relatives. The gene underlying this quantitative trait locus was cloned recently and shown to be associated with altered cell division in ovaries (Frary et al., 2000). However, it was not known whether the change in fruit size is associated with other changes in plant morphology or overall fruit yield-changes that could potentially cause the fruit weight phenotype. To shed light on this issue, a detailed comparison was made between nearly isogenic lines differing for alleles at this locus to search for pleiotropic effects associated with fw2.2. Field observations show that although the small-fruited nearly isogenic line produced smaller ovaries and fruit as expected, this was compensated by a larger number of fruit-due mainly to a significantly greater number of inflorescences-but with no net change in total fruit mass yield. This strongly suggests that fw2.2 may have a pleiotropic effect on how the plant distributes photosynthate among fruit. In a flower removal experiment to control for differences in inflorescence size and number, fruit size remained significantly different between the nearly isogenic lines. These observations indicate that the primary effect of fw2.2 is in controlling ovary and fruit size, and that other associated phenotypic effects are secondary.  相似文献   
95.
96.
The Tapora Landcare Group, operating on the Okahukura Peninsula, has the long-term goal of making this region predator fenced. The aim of this study was to obtain information on the current status of avian biodiversity and the bird community across the band of coastal wetlands on the Okahukura Peninsula. Bird counts were conducted and playback lures used to detect three cryptic wetland species: fernbirds (Bowdleria punctata); spotless crakes (Porzana tabuensis); and banded rails (Gallirallus philippensis). Fernbirds and banded rails were detected at seven of the eight wetland sites sampled whereas spotless crakes were detected at two sites. The native species with the highest relative abundance across the eight sites were silvereyes (Zosterops lateralis) and South Island pied oystercatchers (Haematopus finschi). Changes in avian biodiversity over time in the region can now be monitored, and comprehensive long-term data on the status of avian biodiversity over time obtained.  相似文献   
97.
As a result of earlier breeding efforts, portions of the genome of Basmati 370 have been introgressed into a rice breeding line, B8462T3-710. Cooked-kernel elongation was increased in this breeding line to a level equal to that of Basmati 370. The objective of this study was to identify and locate quantitative trait loci (QTLs) associated with cooked-kernel elongation in an F3 population derived from a cross between B8462T3710 and the reduced-elongation recurrent parent variety, Dellmont. DNA from the parental lines and Basmati 370 as a control, were screened for RFLPs using 170 clones chosen to cover the rice genome at intervals of 8 cM on average. Eighteen markers identified RFLPs common to Basmati 370 and B8462T3-710, but different from Dellmont, suggesting possible associations with kernel elongation. The B8462T3-710/Dellmont F3 population was analyzed for segregation of those RFLPs and for kernel elongation. Analysis of variance of the kernel elongation ratio revealed that two markers, 14.6 cM apart on chromosome 8, are significantly associated with this trait (RZ323 P 0.005, RZ562 P 0.05). Interval mapping suggests a single QTL with a close proximity to RZ323. This QTL was tested in F6 lines derived from the same cross and the presence of the B8462T3-710 segment detected by RZ323 caused a highly significant increase of the kernel elongation ratio (P 0.04). In addition, the QTL for kernel elongation and a gene for aroma, which are major components of the grain quality characteristics of Basmati-type rices, showed linkage. The availability of linked markers to the QTL may facilitate early selection for kernel elongation in rice breeding programs.  相似文献   
98.
Quantitative Trait Locus (QTL) allelic variation was studied by analyzing near-isogenic lines (NILs) carrying homologous introgressions on chromosome 4 from three green-fruited wild tomato species. The NILs affect agronomic (yield, brix, fruit weight) and fruit (fruit shape, color, epidermal reticulation) traits in a similar manner. However, significant differences were detected in the magnitudes of the effects, the dominance deviations and epistatic interactions, indicating that those species carry different alleles for the QTL. As the QTL did not show any interaction across environments, gene-tic backgrounds or other QTLs, it can be used to introduce novel genetic variation into a broad range of cultivars. Analysis of new recombinant NILs showed that fruit traits are controlled by several linked genetic loci, whereas multiple genetic loci control the agronomic traits within the original introgression. The hypothesis that QTLs may be composed of multiple linked genes can not be rejected prior to implement projects for QTL isolation and cloning. Loci involved in color enhancement could not be related to any known gene involved in the carotenoid biosynthesis pathway, therefore it is hypothesized that the function of those loci must be related to the genetic regulation of the carotenoid biosynthetic pathway. Received: 14 April 2000 / Accepted: 12 May 2000  相似文献   
99.
As part of ongoing studies regarding the genetic basis of quantitative variation in phenotype, we have determined the chromosomal locations of quantitative trait loci (QTLs) affecting fruit size, soluble solids concentration, and pH, in a cross between the domestic tomato (Lycopersicon esculentum Mill.) and a closely-related wild species, L. cheesmanii. Using a RFLP map of the tomato genome, we compared the inheritance patterns of polymorphisms in 350 F2 individuals with phenotypes scored in three different ways: (1) from the F2 progeny themselves, grown near Davis, California; (2) from F3 families obtained by selfing each F2 individual, grown near Gilroy, California (F3-CA); and (3) from equivalent F3 families grown near Rehovot, Israel (F3-IS). Maximum likelihood methods were used to estimate the approximate chromosomal locations, phenotypic effects (both additive effects and dominance deviations), and gene action of QTLs underlying phenotypic variation in each of these three environments. A total of 29 putative QTLs were detected in the three environments. These QTLs were distributed over 11 of the 12 chromosomes, accounted for 4.7-42.0% of the phenotypic variance in a trait, and showed different types of gene action. Among these 29 QTLs, 4 were detected in all three environments, 10 in two environments, and 15 in only a single environment. The two California environments were most similar, sharing 11/25 (44%) QTLs, while the Israel environment was quite different, sharing 7/20 (35%) and 5/26 (19%) QTLs with the respective California environments. One major goal of QTL mapping is to predict, with maximum accuracy, which individuals will produce progeny showing particular phenotypes. Traditionally, the phenotype of an individual alone has been used to predict the phenotype of its progeny. Our results suggested that, for a trait with low heritability (soluble solids), the phenotype of F3 progeny could be predicted more accurately from the genotype of the F2 parent at QTLs than from the phenotype of the F2 individual. For a trait with intermediate heritability (fruit pH), QTL genotype and observed phenotype were about equally effective at predicting progeny phenotype. For a trait with high heritability (mass per fruit), knowing the QTL genotype of an individual added little if any predictive value, to simply knowing the phenotype. The QTLs mapped in the L. esculentum X L. cheesmanii F2 appear to be at similar locations to many of those mapped in a previous cross with a different wild tomato (L. chmielewskii).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
100.
 Segregation of the Lycopersicon peruvianum genome was followed through three generations of backcrossing to the cultivated tomato L. esculentum cv ‘E6203’ using molecular markers. Thirteen BC1 plants were genotyped with 113 markers, 67 BC2 plants with 84 markers, and finally 241 BC3 plants were genotyped with 177 markers covering the entire genome and a BC3 map constructed. Several segments of the genome, including parts of chromosomes 3, 4, 6, and 10, quickly became fixed for esculentum alleles, possibly due to sterility problems encountered in the BC1. Observed overall heterozygosity and chromosome segment lengths at each generation were very near the expected theoretical values. Markers located near the top telomeric region of chromosome 9 showed segregation highly skewed towards the wild allele through all generations, suggesting the presence of a gamete promoter gene. One markers, TG9, mapped to a new position on chromosome 9, implying an intrachromosomal translocation event. Despite the great genetic distance between the two parents, overall recombination was only 25% less than that observed in a previous tomato cross, indicating that L. peruvianum genes may be more readily introgressed into cultivated germplasm than originally believed. Received: 9 April 1997 / Accepted : 20 May 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号