首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   25篇
  国内免费   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   8篇
  2008年   5篇
  2006年   8篇
  2005年   11篇
  2004年   5篇
  2003年   5篇
  2002年   8篇
  2001年   4篇
  2000年   9篇
  1999年   5篇
  1998年   6篇
  1997年   7篇
  1996年   15篇
  1995年   12篇
  1994年   12篇
  1993年   18篇
  1992年   10篇
  1991年   12篇
  1990年   4篇
  1989年   7篇
  1988年   11篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
41.
42.
Chen KY  Tanksley SD 《Genetics》2004,168(3):1563-1573
The degree to which stigmas are exserted above the stamen in flowers is a key determinant of cross-pollination (and hence allogamy) in many plant species. Most species in the genus Lycopersicon are obligate or facultative outcrossers and bear flowers with highly exserted stigmas. In contrast, the cultivated tomato (Lycopersicon esculentum) bears flowers with flush or inserted stigmas promoting self-fertilization. It has been observed that a major QTL, se2.1, on chromosome 2 is responsible for a large portion of phenotypic variation for this trait and that mutation(s) at this locus were likely involved in the evolution from allogamy to autogamy in this genus. To understand the genetic and molecular basis of stigma exsertion, we have conducted a high-resolution mapping at the chromosome region harboring the se2.1 QTL. The results indicate that this is a compound locus, comprising at least five tightly linked genes, one controlling style length, three controlling stamen length, and the other affecting anther dehiscence, a taxonomic character used to distinguish Lycopersicon species from other solanaceous species. This cluster of genes may represent the vestiges of an ancient coadapted gene complex in controlling mating behavior.  相似文献   
43.
fw2.2 is one of the few QTLs thus far isolated from plants and the first one known to control fruit size. While it has been established that FW2.2 is a regulator (either directly or indirectly) of cell division, FW2.2 does not share sequence homology to any protein of known function (Frary et al. Science 289:85–88, 2000; Cong et al. Proc Natl Acad Sci USA 99:13606–13611, 2002; Liu et al. Plant Physiol 132:292–299, 2003). Thus, the mechanism by which FW2.2 mediates cell division in developing fruit is currently unknown. In an effort to remedy this situation, a combination of yeast two-hybrid screens, in vitro binding assays and cell bombardment studies were performed. The results provide strong evidence that FW2.2 physically interacts at or near the plasma membrane with the regulatory (beta) subunit of a CKII kinase. CKII kinases are well-studied in both yeast and animals where they form part of cell cycle related signaling pathway. Thus while FW2.2 is a plant-specific protein and regulates cell division in a specialized plant organ (fruit), it appears to participate in a cell-cycle control signal transduction pathway that predates the divergence of single- and multi-cellular organisms. These results thus provide a glimpse into how ancient and conserved regulatory processes can be co-opted in the evolution of novel organs such as fruit.  相似文献   
44.
45.
Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. lycopersici race 2 resistance locus. The genes show structural similarity to the group of recently isolated resistance genes that contain a nucleotide binding motif and leucine-rich repeats. Importantly, the presence of I2C antisense transgenes abrogated race 2 but not race 1 resistance in otherwise normal plants. Expression of the complete sense I2C-1 transgene conferred significant but partial resistance to F. o. lycopersici race 2. All members of the I2C gene family have been mapped genetically and are dispersed on three different chromosomes. Some of the I2C members cosegregate with other tomato resistance loci. Comparison within the leucine-rich repeat region of I2C gene family members shows that they differ from each other mainly by insertions or deletions.  相似文献   
46.
Two yeast artificial chromosomes (YACs) containing genomic DNA from tomato have been isolated using CT220, an RFLP marker which is tightly linked to the tomato spotted wilt virus resistance gene, Sw-5. High-resolution mapping of the YAC ends and internal YAC probes demonstrated that one of the YAC clones, TY257 (400?kb), spans Sw-5. By chromosome walking in a cosmid library, the position of Sw-5 has been delimited within the YAC to a maximal chromosomal segment of 100?kb, spanned by nine overlapping cosmid clones.  相似文献   
47.
L S Barrero  B Cong  F Wu  S D Tanksley 《Génome》2006,49(8):991-1006
Mutation at the fasciated locus was a key step in the production of extreme fruit size during tomato domestication. To shed light on the nature of these changes, near-isogenic lines were used for a comparative developmental study of fasciated and wild-type tomato plants. The fasciated gene directly affects floral meristem size and is expressed before the earliest stages of flower organogenesis. As a result, mature fruit of fasciated mutants have more carpels (locules) and greater fruit diameter and mass. The discovery that fasciated affects floral meristem size led to a search for candidate genes from Arabidopsis known to be involved in floral meristem development. Putative homologs were identified in a large tomato EST database, verified through phylogenetic analyses, and mapped in tomato; none mapped to the fasciated locus; however, putative homologs of WUS and WIG mapped to the locule number locus on chromosome 2, the second major transition to large tomato fruit, with WUS showing the highest association. In other cases, minor QTLs for floral organ number (lcn2.2) and (stn11.2) co-localized with a CLV1 paralog and with the syntenic region containing the CLV3 gene in Arabidopsis, respectively.  相似文献   
48.
The endemic New Zealand ground wētā (Hemiandrus sp. ‘promontorius’) has a Naturally Uncommon conservation status. This is because of the paucity of information on its density and distribution. Here, the biology, density and distribution of a population of this wētā found in and around vineyards in the Awatere Valley, Marlborough was studied. Wētā density was assessed in vineyards, paddocks and shrublands in this valley. Soil moisture, penetration resistance, pH and organic matter were recorded at locations with and without wētā. Wētā density in vineyards was significantly higher than in either paddocks or shrub habitats. In vineyards, the density of this insect was significantly higher under-vines than in the inter-rows. Higher numbers of this wētā were found in moist soils that required lower force to burrow. Females laid an average of 55 eggs between March and April, which hatched in September. These findings highlight the intersection between agriculture and conservation.  相似文献   
49.
A viable option for increasing nitrogen (N) use efficiency and mitigation of negative impacts of N on the environment is to capitalize on multi-element interactions through implementation of nutrient management programs that provide balanced nutrition. Numerous studies have demonstrated the immediate efficacy of this approach in the developing regions like China and India as well as developed countries in North America. Based on 241 site-years of experiments in these countries, the first-year N recovery efficiency (RE) for the conventional or check treatments averaged 21% while the balanced treatments averaged 54% RE, for an average increase of 33% in RE due to balanced nutrition. Effective policies to promote adoption are most likely those that enable site-specific approaches to nutrient management decisions rather than sweeping, nation-wide incentives supporting one nutrient over another. Local farmers, advisers and officials need to be empowered with tools and information to help them define necessary changes in practices to create more balanced nutrient management.  相似文献   
50.
Because cultivated tomato (Solanum lycopersicum L.) is low in genetic diversity, public, verified single nucleotide polymorphism (SNP) markers within the species are in demand. To promote marker development we resequenced approximately 23 kb in a diverse set of 31 tomato lines including TA496. Three classes of markers were sampled: (1) 26 expressed-sequence tag (EST), all of which were predicted to be polymorphic based on TA496, (2) 14 conserved ortholog set II (COSII) or unigene, and (3) ten published sequences, composed of nine fruit quality genes and one anonymous RFLP marker. The latter two types contained mostly noncoding DNA. In total, 154 SNPs and 34 indels were observed. The distributions of nucleotide diversity estimates among marker types were not significantly different from each other. Ascertainment bias of SNPs was evaluated for the EST markers. Despite the fact that the EST markers were developed using SNP prediction within a sample consisting of only one TA496 allele and one additional allele, the majority of polymorphisms in the 26 EST markers were represented among the other 30 tomato lines. Fifteen EST markers with published SNPs were more closely examined for bias. Mean SNP diversity observations were not significantly different between the original discovery sample of two lines (53 SNPs) and the 31 line diversity panel (56 SNPs). Furthermore, TA496 shared its haplotype with at least one other line at 11 of the 15 markers. These data demonstrate that public EST databases and noncoding regions are a valuable source of unbiased SNP markers in tomato. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号