首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   25篇
  国内免费   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   8篇
  2008年   5篇
  2006年   8篇
  2005年   11篇
  2004年   5篇
  2003年   5篇
  2002年   8篇
  2001年   4篇
  2000年   9篇
  1999年   5篇
  1998年   6篇
  1997年   7篇
  1996年   15篇
  1995年   12篇
  1994年   12篇
  1993年   18篇
  1992年   10篇
  1991年   12篇
  1990年   4篇
  1989年   7篇
  1988年   11篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
211.
The genetic basis of pear-shaped tomato fruit   总被引:1,自引:0,他引:1  
Molecular-marker analysis of a cross between yellow pear, a tomato variety bearing small, pear-shaped fruit, and the round-fruited, wild species, Lycopersicon pimpinellifolium LA1589, revealed that pear-shaped fruit is determined largely by a major QTL on chromosome 2 and, to a lesser extent, a minor QTL on chromosome 10. The locus on chromosome 2 was also detected in a cross between yellow pear and the round-fruited introgression line (IL2–5) which carried the distal portion of chromosome 2 from the Lycopersicon pennellii genome. Based on its map position, we propose that the locus detected on chromosome 2 is the same as a locus referred to as ovate in the early tomato literature (Linstrom 1926, 1927). The fruit-shape index (length/diameter) and neck constriction were highly correlated in both populations suggesting that ovate exerts control over both traits or that the genes for these traits are tightly linked on chromosome 2. Using two-way ANOVA test, the minor QTL on chromosome 10 showed no significant interaction with the ovate locus on chromosome 2 with respect to the fruit-shape index. For ovate round fruit was dominant to elongated fruit in the L. pimpinellifolium populations, but additive in the IL2–5 population. Thus far, no genes controlling fruit shape have been cloned. The molecular mapping of the ovate locus may ultimately lead to its isolation via map-based cloning. Received: 8 January 1999 / Accepted: 30 January 1999  相似文献   
212.
Cultivated tomato (Lycopersicon esculentum) encompass a wide range of fruit shape and size variants. This variation can be used to genetically dissect the molecular basis of ovary and fruit morphology. The cultivar Long John displays an extremely elongated fruit phenotype, while the wild relative Lycopersicon pimpinellifolium LA1589 produces fruit that are nearly perfect spheres, typical of wild tomatoes. Quantitative trait mapping of an F2 population between Long John and LA1589 revealed four fruit shape QTLs, located on chromosomes 2, 3, 7 and 11. The primary role of the fruit shape QTL located on chromosome 7, ljfs7, is to control pericarp elongation. The primary role of the fruit shape QTLs on chromosome 2, 3 and 11 (ljfs2, ljfs3 and ljfs11, respectively) is to control pear shape, measured as the eccentricity index. QTL map position and the effect of the loci on fruit shape suggested that ljfs2 and ljfs7 are allelic to the well-studied fruit shape loci ovate and sun, respectively. ljfs3 and ljfs11 map near the previously identified, but less characterized, fruit shape loci fs3.2 and fs11.1, respectively. This result suggests that most of the variation in tomato fruit shape is controlled by a few major QTLs. Although eccentricity and pericarp elongation were largely controlled by independent growth processes, significant interactions were detected between all four fruit shape loci in the control of eccentricity. This indicates that the three eccentricity loci, ljfs2, ljfs3 and ljfs11, epistatically control the same developmental process, while ljfs7 had a pleiotropic effect on eccentricity. Received: 27 March 2001 / Accepted: 7 May 2001  相似文献   
213.
214.
The NEDD4 family of E3 ubiquitin ligases includes nine members. Each is a modular protein, containing an N-terminal C2 domain for cell localization, two-to-four central WW domains for substrate recognition, and a C-terminal, catalytic HECT domain, which is responsible for catalyzing the ubiquitylation reaction. Members of this family are known to affect pathways central to the pathogenesis of colorectal cancer, including the WNT, TGFβ, EGFR, and p53 pathways. Recently, NEDD4 mRNA was reported to be overexpressed in colorectal cancer, but tumor stage was not considered in the analysis. Expression of the other family members has not been studied in colorectal cancer. Herein, we determined the expression patterns of all nine NEDD4 family members in 256 patients who presented with disease ranging from premalignant adenoma to stage IV colorectal cancer. NEDD4 mRNA was significantly increased in all stages of colorectal cancer. In contrast, NEDD4L mRNA, the closest homolog to NEDD4, was the most highly downregulated family member, and was significantly downregulated in all tumor stages. We also found NEDD4L protein was significantly decreased by western blotting in colorectal cancer samples compared to adjacent normal mucosa. In addition, NEDD4L, but not catalytically inactive NEDD4L, inhibited canonical WNT signaling at or below the level of β-catenin in vitro. These findings suggest that NEDD4L may play a tumor suppressive role in colorectal cancer, possibly through inhibition of canonical WNT signaling.  相似文献   
215.
Tomato (Solanum lycopersicum) and coffee (Coffea canephora) belong to the sister families Solanaceae and Rubiaceae, respectively. We report herein the mapping of a common set of 257 Conserved Ortholog Set II genes in the genomes of both species. The mapped markers are well distributed across both genomes allowing the first syntenic comparison between species from these two families. The majority (75%) of the synteny blocks are short (<4 cM); however, some extend up to 50 cM. In an effort to further characterize the synteny between these two genomes, we took advantage of the available sequence for the tomato genome to show that tomato chromosome 7 is syntenic to half of the two coffee linkage groups E and F with the putative break point in tomato localized to the boundary of the heterochromatin and euchromatin on the long arm. In addition to the new insight on genome conservation and evolution between the plant families Solanaceae and Rubiaceae, the comparative maps presented herein provide a translational tool by which coffee researchers may take benefit of DNA sequence and genetic information from tomato and vice versa. It is thus expected that these comparative genome information will help to facilitate and expedite genetic and genomic research in coffee.  相似文献   
216.
Wang Y  Tang X  Cheng Z  Mueller L  Giovannoni J  Tanksley SD 《Genetics》2006,172(4):2529-2540
Eleven sequenced BACs were annotated and localized via FISH to tomato pachytene chromosomes providing the first global insights into the compositional differences of euchromatin and pericentromeric heterochromatin in this model dicot species. The results indicate that tomato euchromatin has a gene density (6.7 kb/gene) similar to that of Arabidopsis and rice. Thus, while the euchromatin comprises only 25% of the tomato nuclear DNA, it is sufficient to account for approximately 90% of the estimated 38,000 nontransposon genes that compose the tomato genome. Moreover, euchromatic BACs were largely devoid of transposons or other repetitive elements. In contrast, BACs assigned to the pericentromeric heterochromatin had a gene density 10-100 times lower than that of the euchromatin and are heavily populated by retrotransposons preferential to the heterochromatin-the most abundant transposons belonging to the Jinling Ty3/gypsy-like retrotransposon family. Jinling elements are highly methylated and rarely transcribed. Nonetheless, they have spread throughout the pericentromeric heterochromatin in tomato and wild tomato species fairly recently-well after tomato diverged from potato and other related solanaceous species. The implications of these findings on evolution and on sequencing the genomes of tomato and other solanaceous species are discussed.  相似文献   
217.
218.
Abundance, polymorphism and genetic mapping of microsatellites in rice   总被引:71,自引:0,他引:71  
Dinucleotide microsatellites have been characterized and used as genetic markers in rice. Screening of a rice genomic library with poly(dG-dA)·(dC-dT) and poly(dG-dT)·(dC-dA) probes indicated that (GA)n repeats occurred, on average, once every 225 kb and (GT)n repeats once every 480 kb. DNA sequencing of ten randomly selected microsatellites indicated that the numbers of repeats ranged from 12 to 34 and that the patterns of microsatellites in rice were similar to those of humans and other mammals. Primers to these microsatellite loci as well as to four published microsatellite-containing sequences have been designed and degrees of polymorphism has been examined with 20 rice accessions. Multiple alleles, ranging from 5 to 11, have been observed at all the microsatellite loci in 20 rice accessions. Alleles specific to two cultivated subspecies, indica and japonica, were found in some microsatellite loci. Heterozygosity values of all the microsatellite markers were significantly higher than those of RFLP markers, based upon a parallel comparison. Ten microsatellite loci have been genetically mapped to four rice chromosomes. The genomic distribution of microsatellites appears to be random in rice.  相似文献   
219.
Several bacteriophage lambda clones containinginterstitialtelomererepeats (ITR) were isolated from a library of tomato genomic DNA by plaque hybridization with the clonedArabidopsis thaliana telomere repeat. Restriction fragments lacking highly repetitive DNA were identified and used as probes to map 14 of the 20 lambda clones. All of these markers mapped near the centromere on eight of the twelve tomato chromosomes. The exact centromere location of chromosomes 7 and 9 has recently been determined, and all ITR clones that localize to these two chromosomes map to the marker clusters known to contain the centromere. High-resolution mapping of one of these markers showed cosegregation of the telomere repeat with the marker cluster closest to the centromere in over 9000 meiotic products. We propose that the map location of interstitial telomere clones may reflect specific sequence interchanges between telomeric and centromeric regions and may provide an expedient means of localizing centromere positions.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号