首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   25篇
  国内免费   1篇
  230篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   8篇
  2008年   5篇
  2006年   8篇
  2005年   11篇
  2004年   5篇
  2003年   5篇
  2002年   8篇
  2001年   4篇
  2000年   9篇
  1999年   5篇
  1998年   6篇
  1997年   7篇
  1996年   15篇
  1995年   12篇
  1994年   12篇
  1993年   18篇
  1992年   10篇
  1991年   12篇
  1990年   4篇
  1989年   7篇
  1988年   11篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
161.
We develop codon-based models for simultaneously inferring the mutational effects of CpG and CpNpG methylation in coding regions. In a data set of 369 tomato genes, we show that there is very little effect of CpNpG methylation but a strong effect of CpG methylation affecting almost all genes. We further show that the CpNpG and CpG effects are largely uncorrelated. Our results suggest different roles of CpG and CpNpG methylation, with CpNpG methylation possibly playing a specialized role in defense against transposons and RNA viruses.  相似文献   
162.
163.
Fruit ripening represents a complex system of genetic and hormonal regulation of eukaryotic development unique to plants. We are using tomato ripening mutants as tools to elucidate genetic components of ripening regulation and have recently demonstrated that the Never-ripe (Nr) mutant is insensitive to the plant growth regulator ethylene (M.B. Lanahan, H.-C. Yen, J.J. Giovannoni, H.J. Klee [1994] Plant Cell 6:521-530). We report here ethylene sensitivity over a range of concentrations in normal and Nr tomato seedlings and show that the Nr mutant retains residual sensitivity to as little as 1 part per million of ethylene. Analysis of ripening-related gene expression in normal and mutant ethylene-treated fruit demonstrates that Nr exerts its influence on development at least in part at the level of ethylene-inducible gene expression. We have additionally used cloned tomato and Arabidopsis sequences known to influence ethylene perception as restriction fragment length polymorphism probes, and have identified a tomato locus linked to Nr that hybridizes to the Arabidopsis ETR1 gene at low stringency, suggesting the possibility that Nr may be homologous to ETR1.  相似文献   
164.
Cab-1 is a complex genetic locus in tomato consisting of four clustered genes encoding chlorophyll a/b-binding polypeptide. Southern blot analysis of total tomato DNA with genomic clones corresponding to the Cab-1 locus has revealed the presence of a repetitive element in the 3 kb spacer regions between two of these genes. This repetitive element, named CR1, has been characterized via sequencing, genetic mapping and hybridization to related solanaceous species. Results indicate that there are as many as 30 copies of this element in the tomato genome and that most, if not all, are found at independent loci. Sites corresponding to 12 of the repeats have been located on different regions of chromosomes 2, 4, 5, 7, 10 and 11. A 1.6 kb PstI-EcoRI fragment from the Cab-1 locus containing the element was sequenced and found to be 75% AT-rich. No open reading frames larger than 150 bp were detected. Several imperfect inverted repeats flanked by direct repeats could be found at the ends of the element. This arrangement is reminiscent of known transposons. Southern hybridization analysis indicates that multiple copies of CR1 exist in all species of the genus Lycopersicon as well as in Solanum lycopersicoides and S. tuberosum (potato), but not in eggplant, pepper, petunia, Datura or tobacco. Melt-off experiments indicate that members of the CR1 family in the tomato genome are more closely related to one another than to homologous members in the genomes of S. lycopersicoides or S. tuberosum, suggesting some type of concerted evolution.  相似文献   
165.
Preparation and flow cytometric analysis of metaphase chromosomes of tomato   总被引:5,自引:0,他引:5  
Summary A procedure for the preparation of tomato chromosome suspensions suitable for flow cytometric analysis is described. Rapidly growing cell suspension cultures of Lycopersicon esculentum cv VFNT cherry and L. pennellii LA716 were treated with colchicine to enrich for metaphase chromosomes. Metaphase indices between 20 and 35% were routinely obtained when cultures were exposed to 0.1% colchicine for 15–18 h after 2 days of subculture. Mitotic cells were isolated by brief treatment with cell wall digesting enzymes in a medium with low osmolarity (325 mOsm/kg of H52O). The low osmolarity medium was needed to avoid the chromosome clumping and decondensation seen in standard media. Suspensions of intact chromosomes were prepared by lysing swollen protoplasts in various buffers (MgSO4, polyamines, hexylene glycol, or KCl-propidium iodide) similar in contents to the buffers used to isolate mammalian chromosomes. For univariate flow cytometric analysis, chromosome suspensions were stained with a fluorescent DNA-binding stain (propidium iodide, Hoechst 33258, mithramycin, or chromomycin A3) and analyzed using an EPICS flow cytometer (Profile Analyzer or 753). Peaks for the chromosomes, chromatids, clumps of chromosomes, nuclei, and fluorescent debris were seen on a histogram of log of fluorescence intensity, and were confirmed by microscopic examination of the objects collected by flow-sorting. Chromosome suspensions prepared in MgSO4 buffer have the highest frequency of intact chromosomes and the least fluorescent cellular debris. Peaks similar to theoretical univariate flow karyotypes of tomato chromosomes were seen on the observed univariate flow karyotypes, but were not as well resolved. Bivariate flow analysis of tomato chromosome suspension using double-stain combination, Hoechst 33258 and chromomycin A3, and two laser beams showed better resolution of some chromosomes.  相似文献   
166.
The stereoselective affinity of small-molecule binding to proteins is typically broadly explained in terms of the thermodynamics of the final bound complex. Using Brownian dynamics simulations, we show that the preferential binding of the MDM2 protein to the geometrical isomers of Nutlin-3, an effective anticancer lead that works by inhibiting the interaction between the proteins p53 and MDM2, can be explained by kinetic arguments related to the formation of the MDM2:Nutlin-3 encounter complex. This is a diffusively bound state that forms prior to the final bound complex. We find that the MDM2 protein stereoselectivity for the Nutlin-3a enantiomer stems largely from the destabilization of the encounter complex of its mirror image enantiomer Nutlin-3b, by the K70 residue that is located away from the binding site. On the other hand, the trans-Nutlin-3a diastereoisomer exhibits a shorter residence time in the vicinity of MDM2 compared with Nutlin-3a due to destabilization of its encounter complex by the collective interaction of pairs of charged residues on either side of the binding site: Glu25 and Lys51 on one side, and Lys94 and Arg97 on the other side. This destabilization is largely due to the electrostatic potential of the trans-Nutlin-3a isomer being largely positive over extended continuous regions around its structure, which are otherwise well-identified into positive and negative regions in the case of the Nutlin-3a isomer. Such rich insight into the binding processes underlying biological selectivity complements the static view derived from the traditional thermodynamic analysis of the final bound complex. This approach, based on an explicit consideration of the dynamics of molecular association, suggests new avenues for kinetics-based anticancer drug development and discovery.  相似文献   
167.
The genome of tomato (Solanum lycopersicum) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, The Netherlands, France, Japan, Spain, Italy and the United States) as part of a larger initiative called the ‘International Solanaceae Genome Project (SOL): Systems Approach to Diversity and Adaptation’. The goal of this grassroots initiative, launched in November 2003, is to establish a network of information, resources and scientists to ultimately tackle two of the most significant questions in plant biology and agriculture: (1) How can a common set of genes/proteins give rise to a wide range of morphologically and ecologically distinct organisms that occupy our planet? (2) How can a deeper understanding of the genetic basis of plant diversity be harnessed to better meet the needs of society in an environmentally friendly and sustainable manner? The Solanaceae and closely related species such as coffee, which are included in the scope of the SOL project, are ideally suited to address both of these questions. The first step of the SOL project is to use an ordered BAC approach to generate a high quality sequence for the euchromatic portions of the tomato as a reference for the Solanaceae. Due to the high level of macro and micro-synteny in the Solanaceae the BAC-by-BAC tomato sequence will form the framework for shotgun sequencing of other species. The starting point for sequencing the genome is BACs anchored to the genetic map by overgo hybridization and AFLP technology. The overgos are derived from approximately 1500 markers from the tomato high density F2-2000 genetic map (http://sgn.cornell.edu/). These seed BACs will be used as anchors from which to radiate the tiling path using BAC end sequence data. Annotation will be performed according to SOL project guidelines. All the information generated under the SOL umbrella will be made available in a comprehensive website. The information will be interlinked with the ultimate goal that the comparative biology of the Solanaceae—and beyond—achieves a context that will facilitate a systems biology approach.  相似文献   
168.
There has recently been increased interest in the use of Markov Chain Monte Carlo (MCMC)-based Bayesian methods for estimating genetic maps. The advantage of these methods is that they can deal accurately with missing data and genotyping errors. Here we present an extension of the previous methods that makes the Bayesian method applicable to large data sets. We present an extensive simulation study examining the statistical properties of the method and comparing it with the likelihood method implemented in Mapmaker. We show that the Maximum A Posteriori (MAP) estimator of the genetic distances, corresponding to the maximum likelihood estimator, performs better than estimators based on the posterior expectation. We also show that while the performance is similar between Mapmaker and the MCMC-based method in the absence of genotyping errors, the MCMC-based method has a distinct advantage in the presence of genotyping errors. A similar advantage of the Bayesian method was not observed for missing data. We also re-analyse a recently published set of data from the eggplant and show that the use of the MCMC-based method leads to smaller estimates of genetic distances.  相似文献   
169.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   
170.
Recombinant inbred lines for genetic mapping in tomato   总被引:11,自引:5,他引:6  
A cross between the cultivated tomato Lycopersicon esculentum and a related wild species L. cheesmanii yielded 97 recombinant inbred lines (RILs) which were used to construct a genetic map consisting of 132 molecular markers. Significant deviation from the expected 1:1 ratio between the two homozygous classes was found in 73% of the markers. In 98% of the deviating markers, L. esculentum alleles were present in greater frequency than the L. cheesmanii alleles. For most of the markers with skewed segregation, the direction of the deviation was maintained from F2 to F7 generations. The average heterozygosity in the population was 15%. This value is significantly greater than the 1.5% heterozygosity expected for RILs in the F7 generation. On average, recombination between linked markers was twice as high in the RILs than in the F2 population used to derive them. The utility of RILs for the mapping of qualitative and quantitative traits is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号