首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1817篇
  免费   141篇
  2024年   1篇
  2023年   7篇
  2022年   15篇
  2021年   36篇
  2020年   32篇
  2019年   41篇
  2018年   33篇
  2017年   28篇
  2016年   53篇
  2015年   95篇
  2014年   120篇
  2013年   136篇
  2012年   185篇
  2011年   236篇
  2010年   136篇
  2009年   75篇
  2008年   122篇
  2007年   139篇
  2006年   111篇
  2005年   79篇
  2004年   88篇
  2003年   59篇
  2002年   60篇
  2001年   14篇
  2000年   9篇
  1999年   13篇
  1998年   11篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
排序方式: 共有1958条查询结果,搜索用时 15 毫秒
131.
Mitochondrial myopathy patients (MMPs) have impaired oxidative phosphorylation and exercise intolerance. Endurance training of MMPs improves exercise tolerance, but also increases mutational load. To assess the regulation of mitochondrial content in MMPs, we measured proteins involved in 1) biogenesis, 2) oxidative stress, and 3) apoptosis in MMPs and healthy controls (HCs) both before and after endurance training. Before training, MMPs had a greater mitochondrial content, along with a 1.4-fold (P < 0.05) higher expression of the biogenesis regulator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha). The DNA repair enzyme 8-oxoguanine DNA glycolase-1 (OGG-1), the antioxidant manganese superoxide dismutase (MnSOD), and the apoptotic proteins AIF and Bcl-2 were higher in MMPs compared with HCs. Aconitase, an enzyme sensitive to oxidative stress, was 52% lower (P < 0.05) in MMPs when calculated based on an estimate of mitochondrial volume and oxidative stress-induced protein modifications tended to be higher in MMPs compared with HCs. Endurance training (ET) induced increases in mitochondrial content in both HC subjects and MMPs, but there was no effect of training on the regulatory proteins Tfam or PGC-1alpha. In MMPs, training induced a selective reduction of OGG-1, an increase in MnSOD, and a reduction in aconitase activity. Thus, before training, MMPs exhibited an adaptive response of nuclear proteins indicative of a compensatory increase in mitochondrial content. Following training, several parallel adaptations occurred in MMPs and HCs, which may contribute to previously observed functional improvements of exercise in MMPs. However, our results indicate that muscle from MMPs may be exposed to greater levels of oxidative stress during the course of training. Further investigation is required to evaluate the long-term benefits of endurance training as a therapeutic intervention for mitochondrial myopathy patients.  相似文献   
132.
On the basis of IgE epitope mapping data, we have produced three allergen fragments comprising aa 1-33, 1-57, and 31-110 of the major timothy grass pollen allergen Phl p 6 aa 1-110 by expression in Escherichia coli and chemical synthesis. Circular dichroism analysis showed that the purified fragments lack the typical alpha-helical fold of the complete allergen. Superposition of the sequences of the fragments onto the three-dimensional allergen structure indicated that the removal of only one of the four helices had led to the destabilization of the alpha helical structure of Phl p 6. The lack of structural fold was accompanied by a strong reduction of IgE reactivity and allergenic activity of the three fragments as determined by basophil histamine release in allergic patients. Each of the three Phl p 6 fragments adsorbed to CFA induced Phl p 6-specific IgG Abs in rabbits. However, immunization of mice with fragments adsorbed to an adjuvant allowed for human use (AluGel-S) showed that only the Phl p 6 aa 31-110 induced Phl p 6-specific IgG Abs. Anti-Phl p 6 IgG Abs induced by vaccination with Phl p 6 aa 31-110 inhibited patients' IgE reactivity to the wild-type allergen as well as Phl p 6-induced basophil degranulation. Our results are of importance for the design of hypoallergenic allergy vaccines. They show that it has to be demonstrated that the hypoallergenic derivative induces a robust IgG response in a formulation that can be used in allergic patients.  相似文献   
133.
Bacterial cell division requires the coordinated action of cell division proteins and murein (peptidoglycan) synthases. Interactions involving the essential cell division protein FtsN and murein synthases were studied by affinity chromatography with membrane fraction. The murein synthases PBP1A, PBP1B, and PBP3 had an affinity to immobilized FtsN. FtsN and PBP3, but not PBP1A, showed an affinity to immobilized PBP1B. The direct interaction between FtsN and PBP1B was confirmed by pulldown experiments and surface plasmon resonance. The interaction was also detected by bacterial two-hybrid analysis. FtsN and PBP1B could be cross-linked in intact cells of the wild type and in cells depleted of PBP3 or FtsW. FtsN stimulated the in vitro murein synthesis activities of PBP1B. Thus, FtsN could have a role in controlling or modulating the activity of PBP1B during cell division in Escherichia coli.  相似文献   
134.
The target calcium store of nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent endogenous calcium-mobilizing compound known to date, has been proposed to reside in the lysosomal compartment or in the endo/sarcoplasmic reticulum. This study was performed to test the hypothesis of a lysosomal versus an endoplasmic reticular calcium store sensitive to NAADP in T-lymphocytes. Pretreatment of intact Jurkat T cells with glycyl-phenylalanine 2-naphthylamide largely reduced staining of lysosomes by LysoTracker Red and abolished NAADP-induced Ca(2+) signaling. However, the inhibitory effect was not specific since Ca(2+) mobilization by d-myo-inositol 1,4,5-trisphosphate and cyclic ADP-ribose was abolished, too. Bafilomycin A1, an inhibitor of the lysosomal H(+)-ATPase, did not block or reduce NAADP-induced Ca(2+) signaling, although it effectively prevented labeling of lysosomes by LysoTracker Red. Further, previous T cell receptor/CD3 stimulation in the presence of bafilomycin A1, assumed to block refilling of lysosomal Ca(2+) stores, did not antagonize subsequent NAADP-induced Ca(2+) signaling. In contrast to bafilomycin A1, emptying of the endoplasmic reticulum by thapsigargin almost completely prevented Ca(2+) signaling induced by NAADP. In conclusion, in T-lymphocytes, no evidence for involvement of lysosomes in NAADP-mediated Ca(2+) signaling was obtained. The sensitivity of NAADP-induced Ca(2+) signaling toward thapsigargin, combined with our recent results identifying ryanodine receptors as the target calcium channel of NAADP (Dammermann, W., and Guse, A. H. (2005) J. Biol. Chem. 280, 21394-21399), rather suggest that the target calcium store of NAADP in T cells is the endoplasmic reticulum.  相似文献   
135.
Netrin 1 plays key roles in axon guidance and neuronal migration during central nervous system (CNS) development. Outside the CNS, Netrin 1 has been shown to be involved in epithelial morphogenesis of various organs. We have shown that Netrin 1 is essential for inner ear semicircular duct formation, but the involvement of Netrin 1 receptors in this process has remained unknown. Netrin 1 receptors include members of the Deleted in colorectal cancer (Dcc), Unc5-homologue and integrin families. Here we have analysed the expression of these receptor genes during inner ear development and verified the inner ear phenotypes of several receptor mutant mice. Special interest was directed to receptors that could cooperate with Netrin 1 during semicircular duct formation. We show that Neogenin (Neo1), Unc5c as well as integrin b1 (Itgb1) are expressed in periotic mesenchyme, while Dcc, Unc5b, Unc5c, Itga3, Itga6 and Itgb1 are expressed in different parts of the otic epithelium. In spite of the broad and strong expression of several receptors in ear region, none of the analysed receptor mutant embryos showed any defects in inner ear development.  相似文献   
136.
Obligatory homologous recombination (HR) is required for chiasma formation and chromosome segregation in meiosis I. Meiotic HR is initiated by DNA double-strand breaks (DSBs), generated by Spo11, a homologue of the archaebacterial topoisomerase subunit Top6A. In Saccharomyces cerevisiae, Rad50, Mre11 and Com1/Sae2 are essential to process an intermediate of the cleavage reaction consisting of Spo11 covalently linked to the 5' termini of DNA. While Rad50 and Mre11 also confer genome stability to vegetative cells and are well conserved in evolution, Com1/Sae2 was believed to be fungal-specific. Here, we identify COM1/SAE2 homologues in all eukaryotic kingdoms. Arabidopsis thaliana Com1/Sae2 mutants are sterile, accumulate AtSPO11-1 during meiotic prophase and fail to form AtRAd51 foci despite the presence of unrepaired DSBs. Furthermore, DNA fragmentation in AtCom1 is suppressed by eliminating AtSPO11-1. In addition, AtCOM1 is specifically required for mitomycin C resistance. Interestingly, we identified CtIP, an essential protein interacting with the DNA repair machinery, as the mammalian homologue of Com1/Sae2, with important implications for the molecular role of CtIP.  相似文献   
137.
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical genes for cysteine-homologues of the selenocysteine-containing glutathione peroxidases. The enzymes, which are essential for the parasites, lack glutathione peroxidase activity but catalyse the trypanothione/Tpx (tryparedoxin)-dependent reduction of hydroperoxides. Cys47, Gln82 and Trp137 correspond to the selenocysteine, glutamine and tryptophan catalytic triad of the mammalian selenoenzymes. Site-directed mutagenesis revealed that Cys47 and Gln82 are essential. A glycine mutant of Trp137 had 13% of wild-type activity, which suggests that the aromatic residue may play a structural role but is not directly involved in catalysis. Cys95, which is conserved in related yeast and plant proteins but not in the mammalian selenoenzymes, proved to be essential as well. In contrast, replacement of the highly conserved Cys76 by a serine residue resulted in a fully active enzyme species and its role remains unknown. Thr50, proposed to stabilize the thiolate anion at Cys47, is also not essential for catalysis. Treatment of the C76S/C95S but not of the C47S/C76S double mutant with H2O2 induced formation of a sulfinic acid and covalent homodimers in accordance with Cys47 being the peroxidative active site thiol. In the wild-type peroxidase, these oxidations are prevented by formation of an intramolecular disulfide bridge between Cys47 and Cys95. As shown by MS, regeneration of the reduced enzyme by Tpx involves a transient mixed disulfide between Cys95 of the peroxidase and Cys40 of Tpx. The catalytic mechanism of the Tpx peroxidase resembles that of atypical 2-Cys-peroxiredoxins but is distinct from that of the selenoenzymes.  相似文献   
138.
139.
To gain insight into the role and association of cell cycle and apoptosis regulatory proteins and telomerase activity in the course of progression of melanocitic lesions we have examined immunohistochemicaly, expression and the distribution of p53, bcl-2, Ki-67 and telomerase in 25 samples of common and dysplastic nevi, and 45 samples of primary invasive melanomas. Protein p53 expression was significantly increased in dysplastic as compared with common nevi and melanomas (p < 0.001). Bcl-2 protein expression was significantly increased in melanomas as compared with common aquired and dysplastic nevi (p = 0.001). Nevi and melanomas exhibited clear-cut differences in terms of Ki-67 expression. Telomerase expression was significantly increased in melanomas as compared with common acquired (p = 0.014) and dysplastic nevi (p < 0.001). Enhanced telomerase activity in association with increased bcl-2 expression in the course of melanoma progression could contribute to development and progression of melanoma.  相似文献   
140.
Astroglia cells structurally and nutritionally support neurons in the central nervous system. They play an important role in guiding the construction of the nervous system and controlling the chemical and ionic environment of neurons. They also represent the major sites for accumulation and immobilisation of toxic metal ions most probably connected with metallothioneins. For this reason astroglia cells possess high cytosolic levels of metallothioneins I, II and III (MT-I,II,III). Our aim was to establish the inducibility and metal binding of MTs in two human astrocytoma cell lines, U87 MG (astrocytoma–glioblastoma, grade IV) and IPDDC-2A (astrocytoma, grade II), on exposure to cadmium chloride (1 μM). MTs were identified by molecular weight (size exclusion chromatography) and their metal content (Cd, Zn and Cu) to follow the interactions between metals. We showed that MTs are constitutively expressed in both human astrocytoma cell lines. In accordance with the higher malignancy grade of U87 MG, the amount of MTs was higher in U87 MG than in IPDDC-2A cells. After 24 hours of exposure to Cd their expression greatly increased in both cell lines and they were capable of immobilising almost all water soluble Cd. Induction of MTs in U87 MG cells was additionally followed up to 48 hours with exposure to different concentrations of CdCl2 (1, 10 μM). Induction was a time dependent process throughout the period. Isoform III (identified by chromatographic separation of isoform III from I/II) was present at all exposure times, but only in traces with respect to the prevailing amounts of MT-I/II isoforms. So induction can be attributed to isoform I/II only.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号