首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6763篇
  免费   340篇
  国内免费   1篇
  2023年   26篇
  2022年   31篇
  2021年   78篇
  2020年   54篇
  2019年   74篇
  2018年   127篇
  2017年   115篇
  2016年   158篇
  2015年   184篇
  2014年   239篇
  2013年   346篇
  2012年   623篇
  2011年   863篇
  2010年   412篇
  2009年   156篇
  2008年   532篇
  2007年   518篇
  2006年   443篇
  2005年   378篇
  2004年   320篇
  2003年   291篇
  2002年   231篇
  2001年   82篇
  2000年   156篇
  1999年   89篇
  1998年   60篇
  1997年   18篇
  1996年   16篇
  1995年   20篇
  1994年   10篇
  1993年   15篇
  1992年   22篇
  1991年   16篇
  1990年   13篇
  1989年   17篇
  1987年   18篇
  1985年   21篇
  1984年   23篇
  1982年   16篇
  1980年   17篇
  1979年   16篇
  1978年   13篇
  1977年   10篇
  1976年   17篇
  1975年   12篇
  1974年   18篇
  1973年   11篇
  1971年   11篇
  1970年   9篇
  1967年   9篇
排序方式: 共有7104条查询结果,搜索用时 296 毫秒
931.
Essential oils of 25 indigenous populations of Dalmatian sage (Salvia officinalis L.) that represent nearly half of native distribution area of the species were analyzed. Plantlets collected from wild populations were grown in the same field under the same environmental conditions and then sampled for essential‐oil analysis. The yield of essential oil ranged from 1.93 to 3.70% with average of 2.83%. Among the 62 compounds detected, eight (cis‐thujone, camphor, trans‐thujone, 1,8‐cineole, β‐pinene, camphene, borneol, and bornyl acetate) formed 78.13–87.33% of essential oils of individual populations. Strong positive correlations were observed between camphor and β‐pinene, β‐pinene and borneol, as well as between borneol and bornyl acetate. The strongest negative correlation was detected between camphor and trans‐thujone. Principal component analysis (PCA) on the basis of eight main compounds showed that first main component separated populations with high thujone content, from those rich in camphor, while the second component separated populations rich in cis‐thujone from those rich in trans‐thujone. Cluster analysis (CA) led to the identification of three chemotypes of S. officinalis populations: cis‐thujone; trans‐tujone, and camphor/β‐pinene/borneol/bornyl acetate. We propose that differences in essential oils of 25 populations are mostly genetically controlled, since potential environmental factors were controlled in this study.  相似文献   
932.
Analysis by GC and GC/MS of the essential‐oil samples obtained from dry above‐ground parts of Hypericum rumeliacum Boiss . (collected in the flowering and fruit‐forming vegetative stages) allowed the identification of 212 components in total, comprising ≥97.8% of the total oil composition. In the flowering phase, the major identified volatile compounds were undecane (6.6%), dodecanal (10.8%), and germacrene D (14.1%), whereas α‐pinene (7.3%), β‐pinene (26.1%), (Z)‐β‐ocimene (8.5%), (E)‐β‐ocimene (10.2%), bicyclogermacrene (7.7%), and germacrene D (15.1%) were dominant in the fruit‐forming phase. Some of the minor constituents found in the studied oil samples (e.g., a homologous series of four 6‐alkyl‐5,6‐dihydro‐2H‐pyran‐2‐ones, i.e., massoia dodeca‐, trideca‐, tetradeca‐, and hexadecalactones) have a restricted occurrence in the Plant Kingdom, and their presence in Hypericum L. spp. has not been previously reported. The chemical compositions of the herein studied additional 34 oils obtained from selected Hypericum taxa were compared using multivariate statistical analysis (agglomerative hierarchical cluster analysis and principal component analysis). The results of these statistical analyses could not be used to either confirm or discard the existence of different H. rumeliacum chemotypes. However, they have implied that the volatile profile of this plant species is determined by the stage of its phenological development.  相似文献   
933.
Composition of the essential oils of Rosmarinus officinalis of ten populations from the Balkan Peninsula were determined by GC/FID and GC/MS. The main constituents were 1,8-cineole, camphor, α-pinene, and borneol. Multivariate statistical analysis (UPGMA cluster analysis and principal-component analysis (PCA)) revealed two major types of rosemary oil, i.e., 1,8-cineole and camphor-type, and two intermediate types, i.e., camphor/1,8-cineole/borneol type and 1,8-cineole/camphor type. The regression analyses (simple linear regression and stepwise multiple regression) have shown that, with respect to basic geographic, orographic, and 19 bioclimatic characteristics of each population, bioclimatic factor temperature of habitat represented the dominant abiogenetic factor, which, in chemical sense, led to differentiation of populations in the studied region. Also, the regression analysis have shown that some constituents of essential oils are independent of any single bioclimatic factors. However, some constituents display statistically significant correlations with some abiotic factors.  相似文献   
934.
Analysis by GC and GC/MS of the essential oil obtained from above-ground parts of Micromeria dalmatica Benth. allowed the identification of 116 components, comprising 93.6% of the total oil composition. The major compounds are 3-oxygenated p-menthane monoterpenes and were identified as pulegone (29.6%), menthone (11.7%), and piperitenone (10.8%). The chemical composition of this and additional 30 oils obtained from selected Micromeria Benth. taxa were compared by using multivariate statistical analysis (agglomerative hierarchical cluster analysis and principal component analysis (PCA)). The results of statistical analyses, as well as the domination of different concurrent p-menthane-skeleton-type monoterpene biosynthetical sub-branches in the compared M. dalmatica samples, implied the occurrence of at least two different chemotypes of the mentioned species.  相似文献   
935.
936.
Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network leaves a detectable genetic fingerprint in the pathogen population. To this end we compare phylogenies generated by disease outbreaks in simulated populations with different types of contact networks. We find that the shape of these phylogenies strongly depends on contact structure. In particular, measures of tree imbalance allow us to quantify to what extent the contact structure underlying an epidemic deviates from a null model contact network and illustrate this in the case of random mixing. Using a phylogeny from the Swiss HIV epidemic, we show that this epidemic has a significantly more unbalanced tree than would be expected from random mixing.  相似文献   
937.
938.
The study is focused on a series of 5-arylidenehydantoin derivatives with a phenylpiperazine-hydroxypropyl fragment at N3 of the hydantoin ring. The compounds were assessed on their affinity for α(1)-adrenoceptors and evaluated in functional bioassays for their antagonistic properties. Crystal structures of (Z)-5-(4-chlorobenzylidene)-3-(3-(4-(2-ethoxyphenyl)piperazin-1-yl)-2-hydroxypropyl)imidazolidine-2,4-dione (7) and hydrochloride of (Z)-5-(4-chlorobenzylidene)-3-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)imidazolidine-2,4-dione (10a) were solved using the X-ray diffraction method. Classical molecular mechanics (MMFFs force field, MCMM, MacroModel) were used to predict 3D structure of compounds 5a-18a using a crystal structure of 7. SAR analysis was performed on the basis of Barbaro's pharmacophore model and structural properties of previously investigated α(1)-adrenoceptor antagonists possessing a hydantoin fragment. Most of the compounds exhibited significant affinities for α(1)-ARs in nanomolar range (40-290 nM). The highest activities (K(i)<75 nM) were observed for compounds possessing a 2-alkoxyphenylpiperazine fragment and two methoxy substituents at the benzylidene moiety. The results indicated that chemical properties, number and positions of substituents at the 5-arylidene fragment influenced the power of α(1)-affinities as follows: 3,4-di CH(3)O>2,4-di CH(3)O>4-Cl>2,3-di CH(3)O>H>4-N(CH(3))(2).  相似文献   
939.
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号