首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1631篇
  免费   114篇
  国内免费   1篇
  2023年   11篇
  2022年   18篇
  2021年   59篇
  2020年   27篇
  2019年   30篇
  2018年   43篇
  2017年   35篇
  2016年   56篇
  2015年   100篇
  2014年   102篇
  2013年   138篇
  2012年   133篇
  2011年   132篇
  2010年   81篇
  2009年   55篇
  2008年   96篇
  2007年   115篇
  2006年   108篇
  2005年   77篇
  2004年   70篇
  2003年   64篇
  2002年   53篇
  2001年   16篇
  2000年   8篇
  1999年   13篇
  1998年   7篇
  1997年   12篇
  1996年   11篇
  1995年   9篇
  1994年   8篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1987年   8篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   6篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有1746条查询结果,搜索用时 31 毫秒
121.
Carbon and nitrogen are supplied by a variety of sources in the desert food web; both vascular and non-vascular plants and cyanobacteria supply carbon, and cyanobacteria and plant-associated rhizosphere bacteria are sources of biological nitrogen fixation. The objective of this study was to compare the relative influence of vascular plants and biological soil crusts on desert soil nematode and protozoan abundance and community composition. In the first experiment, biological soil crusts were removed by physical trampling. Treatments with crust removed had fewer nematodes and a greater relative ratio of bacterivores to microphytophages than treatments with intact crust. However, protozoa composition was similar with or without the presence of crusts. In a second experiment, nematode community composition was characterized along a spatial gradient away from stems of grasses or shrubs. Although nematodes generally occurred in increasing abundance nearer to plant stems, some genera (such as the enrichment-type Panagrolaimus) increased disproportionately more than others (such as the stress-tolerant Acromoldavicus). We propose that the impact of biological soil crusts and desert plants on soil microfauna, as reflected in the community composition of microbivorous nematodes, is a combination of carbon input, microclimate amelioration, and altered soil hydrology.  相似文献   
122.

Introduction  

The goal of this study is to analyze the potential immunosuppressive properties of mesenchymal stem cells (MSC) on T cell proliferation and in collagen-induced arthritis (CIA). An additional aim is to investigate the role of interferon-γ (IFN-γ) in these processes.  相似文献   
123.
124.
1. Two basic tenets of competition among parasitoids, that taxonomically distinct parasitoids are unable to discriminate against hosts that have previously been attacked by a competitor and that previous parasitism reduces the quality of a host, were tested by monitoring the oviposition response of Hyssopus pallidus, a gregarious ectoparasitoid, to healthy codling moth larvae and codling moth larvae that had previously been parasitised by a solitary endoparasitoid, Ascogaster quadridentata. 2. Hyssopus pallidus accepted both categories of host larva for oviposition when its competitor was constrained as a first‐instar larva by the diapause development of its host, but discriminated against previously parasitised host larvae when its competitor was present as a larger larva in a non‐diapausing host. 3. Hyssopus pallidus distinguished between the two categories of host larva by allocating twice as many eggs to host larvae previously parasitised by A. quadridentata, a response that was not influenced by previous oviposition experience. 4. The larger clutch sizes allocated to previously parasitised host larvae produced twice as many female progeny, each of a typical size, such that the total biomass was twice that produced from the smaller clutches laid on healthy host larvae. Possible confounding influences of host age and diapause are discounted. 5. These results demonstrate that interspecific discrimination does occur in H. pallidus and that host quality can be improved through previous parasitism by an endoparasitoid. Although interspecific discrimination appears rare among insect parasitoids, it may have been overlooked among ectoparasitoids and requires examination of the fitness consequences of interspecific interactions to clarify its adaptive significance.  相似文献   
125.
Phosphorylated serine- and arginine-rich (SR) proteins play an important role in the formation of spliceosomes, possibly controlling the regulation of alternative splicing. Enzymes that phosphorylate the SR proteins belong to the family of CDC2/CDC28-like kinases (CLK). Employing nucleotide sequence comparison of human expressed sequence tag sequences to the murine counterpart, we identified, cloned, and recombinantly expressed the human orthologue to the murine CLK4 cDNA. When fused to glutathione S-transferase, the catalytically active human CLK4 is able to autophosphorylate and to phosphorylate myelin basic protein, but not histone H2B as a substrate. Inspection of mRNA accumulation demonstrated gene expression in all human tissues, with the most prominent abundance in liver, kidney, brain, and heart. Using fluorescence in situ hybridization, the human CLK4 cDNA was localized to band q35 on chromosome 4.  相似文献   
126.
Sentinels at the wall: cell wall receptors and sensors   总被引:6,自引:2,他引:4  
The emerging view of the plant cell wall is of a dynamic and responsive structure that exists as part of a continuum with the plasma membrane and cytoskeleton. This continuum must be responsive and adaptable to normal processes of growth as well as to stresses such as wounding, attack from pathogens and mechanical stimuli. Cell expansion involving wall loosening, deposition of new materials, and subsequent rigidification must be tightly regulated to allow the maintenance of cell wall integrity and co-ordination of development. Similarly, sensing and feedback are necessary for the plant to respond to mechanical stress or pathogen attack. Currently, understanding of the sensing and feedback mechanisms utilized by plants to regulate these processes is limited, although we can learn from yeast, where the signalling pathways have been more clearly defined. Plant cell walls possess a unique and complicated structure, but it is the protein components of the wall that are likely to play a crucial role at the forefront of perception, and these are likely to include a variety of sensor and receptor systems. Recent plant research has yielded a number of interesting candidates for cell wall sensors and receptors, and we are beginning to understand the role that they may play in this crucial aspect of plant biology.  相似文献   
127.
128.
129.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, whose primary mechanisms or causes are still not defined and for which no effective treatment is available. We have recently reported that before disease onset the level of tyrosine nitrated proteins is increased in the G93A SOD1 transgenic mouse model of ALS. In the present investigation, we carried out a proteomic analysis of spinal cord extracts from G93A SOD1 mice at the presymptomatic stage of the disease to further unravel primary events in the pathogenesis and tentatively screen for potential pharmacological targets. Using a robust two-dimensional gel electrophoresis-based proteomic approach, we detected a number of proteins differentially represented in presymptomatic mice in comparison with controls. Alterations of these proteins correlate with mitochondrial dysfunction, aggregation, and stress response. Moreover, we found a variation in the isoform pattern of cyclophilin A, a molecular chaperone that protects cells from the oxidative stress.  相似文献   
130.
AAA+ proteases are frequently regulated by adaptors that modulate spatial and temporal control of protein turnover. Caulobacter crescentus is an alpha-proteobacterium which requires protein degradation by the AAA+ ClpXP protease for cell-cycle progression, and contains an adaptor (SspBalpha) that binds ssrA-tagged proteins and targets them to ClpXP. Here we determine the tag-binding specificity and crystal structure of SspBalpha. Despite poor sequence homology, the overall SspBalpha fold resembles orthologs from other bacteria. However, several structural features are specific to the SspBalpha subfamily, including the dimerization interface, binding surfaces optimized for ssrA-tag delivery, and residues in the tag-binding groove that act as selectivity gatekeepers for substrate recognition. Mutagenesis of these residues broadens specificity, creating a promiscuous adaptor that recognizes an expanded substrate repertoire. These results highlight general features of adaptor-mediated substrate recognition and shed light on design principles that underlie adaptor function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号