首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1497篇
  免费   100篇
  国内免费   1篇
  1598篇
  2024年   2篇
  2023年   12篇
  2022年   20篇
  2021年   54篇
  2020年   27篇
  2019年   29篇
  2018年   43篇
  2017年   34篇
  2016年   55篇
  2015年   97篇
  2014年   99篇
  2013年   132篇
  2012年   126篇
  2011年   123篇
  2010年   74篇
  2009年   52篇
  2008年   88篇
  2007年   108篇
  2006年   102篇
  2005年   67篇
  2004年   62篇
  2003年   59篇
  2002年   49篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   9篇
  1996年   10篇
  1995年   8篇
  1994年   7篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1976年   1篇
排序方式: 共有1598条查询结果,搜索用时 0 毫秒
11.
The common cytokine receptor gamma chain (gamma c), an essential component of the receptors for IL-2, IL-4, IL-7, IL-9, and IL-15, is critical for the development and function of lymphocytes. Recently, a novel lymphokine (IL-21) and its receptor (IL-21R alpha) were described which profoundly affect the growth and activation state of B, T, and NK cells in concert with other lymphokines or stimuli [Parrish-Novak, J., et al. (2000) Nature 408, 57-63]. In this report, we show that gamma c is also a required signaling component of the IL-21 receptor (IL-21R) using the gamma c-deficient X-linked severe combined immunodeficiency (XSCID) lymphoblastoid cell line JT, and JT cells reconstituted with gamma c (JT/gamma c). Moreover, we demonstrate a functional requirement for both gamma c and the gamma c-associated Janus family tyrosine kinase 3 (JAK3) in IL-21-induced proliferation of pro-B-lymphoid cells engineered to express human IL-21R alpha (BaF3/IL-21R alpha). Retroviral-mediated transduction of wild-type gamma c into XSCID JT cells restored function to the IL-21R, as shown by IL-21-induced tyrosine phosphorylation of JAK1 and JAK3, and downstream activation of STAT5, in JT/gamma c cells as well as BaF3/IL-21R alpha and primary splenic B cells. In contrast, IL-21 failed to activate the JAK-STAT pathway in nonreconstituted JT cells. Monoclonal antibodies specific for the gamma c chain effectively inhibited IL-21-induced growth of BaF3/IL-21R alpha cells, supporting a functional role for this molecule in the IL-21R complex. In addition, the specific JAK3 tyrosine kinase inhibitor WHI-P131 significantly reduced IL-21-induced proliferation of BaF3/IL-21R alpha cells. Taken together, these results definitively demonstrate that IL-21-mediated signaling requires the gamma c chain, and indicate that JAK3 is an essential transducer of gamma c-dependent survival and/or mitogenic signals induced by this cytokine.  相似文献   
12.
Expression of recombinant proteins in Escherichia coli often leads to formation of inclusion bodies (IB). If a recombinant protein contains one or more disulfide bonds, protein refolding and thiol oxidation reactions are required to recover its biological activity. Previous studies have demonstrated that molecular chaperones and foldases assist with the in vitro protein refolding. However, their use has been limited by the stoichiometric amount required for the refolding reaction. In search of alternatives to facilitate the use of these folding biocatalysts in this study, DsbA, DsbC, and the apical domain of GroEL (AD) were fused to the carbohydrate-binding module CBDCex of Cellulomonas fimi. The recombinant proteins were purified and immobilized in cellulose and used to assist the oxidative refolding of denatured and reduced lysozyme. The assisted refolding yields obtained with immobilized folding biocatalysts were at least twice of those obtained in the spontaneous refolding, suggesting that the AD, DsbA, and DsbC immobilized in cellulose might be useful for the oxidative refolding of recombinant proteins that are expressed as inclusion bodies. In addition, the spontaneous or assisted refolding kinetics data fitted well (r2 > 0.9) to a previously reported lysozyme refolding model. The estimated refolding (k N) and aggregation (k A) constants were consistent with the hypothesis that foldases assisted the oxidative refolding of lysozyme by decreasing protein aggregation rather than increasing the refolding rate.  相似文献   
13.
Carbon and nitrogen are supplied by a variety of sources in the desert food web; both vascular and non-vascular plants and cyanobacteria supply carbon, and cyanobacteria and plant-associated rhizosphere bacteria are sources of biological nitrogen fixation. The objective of this study was to compare the relative influence of vascular plants and biological soil crusts on desert soil nematode and protozoan abundance and community composition. In the first experiment, biological soil crusts were removed by physical trampling. Treatments with crust removed had fewer nematodes and a greater relative ratio of bacterivores to microphytophages than treatments with intact crust. However, protozoa composition was similar with or without the presence of crusts. In a second experiment, nematode community composition was characterized along a spatial gradient away from stems of grasses or shrubs. Although nematodes generally occurred in increasing abundance nearer to plant stems, some genera (such as the enrichment-type Panagrolaimus) increased disproportionately more than others (such as the stress-tolerant Acromoldavicus). We propose that the impact of biological soil crusts and desert plants on soil microfauna, as reflected in the community composition of microbivorous nematodes, is a combination of carbon input, microclimate amelioration, and altered soil hydrology.  相似文献   
14.
15.
16.
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer’s disease, and suggest that misregulated EV traffic may be an underlying defect.  相似文献   
17.
Xylose anaerobic conversion by open-mixed cultures   总被引:1,自引:0,他引:1  
Xylose is, after glucose, the dominant sugar in agricultural wastes. In anaerobic environments, carbohydrates are converted into volatile fatty acids and alcohols. These can be used as building blocks in biotechnological or chemical processes, e.g., to produce bioplastics. In this study, xylose fermentation by mixed microbial cultures was investigated and compared with glucose under the same conditions. The product spectrum obtained with both substrates was comparable. It was observed that, in the case of xylose, a higher fraction of the carbon was converted into catabolic products (butyrate, acetate, and ethanol) and the biomass yield was approximately 20% lower than on glucose, 0.16 versus 0.21 Cmol X/Cmol S. This lower yield is likely related to the need of an extra ATP during xylose uptake. When submitted to a pulse of glucose, the population cultivated on xylose could instantaneously convert the glucose. No substrate preference was observed when glucose and xylose were fed simultaneously to the continuously operated bioreactor.  相似文献   
18.
19.
20.
Heteranthery, the presence of two or more anther types in the same flower, is taxonomically widespread among bee-pollinated angiosperms, yet has puzzled botanists since Darwin. We test two competing hypotheses for its evolution: the long-standing ‘division of labour'' hypothesis, which posits that some anthers are specialized as food rewards for bees whereas others are specialized for surreptitious pollination, and our new hypothesis that heteranthery is a way to gradually release pollen that maximizes pollen delivery. We examine the evolution of heteranthery and associated traits across the genus Clarkia (Onagraceae) and study plant–pollinator interactions in two heterantherous Clarkia species. Across species, heteranthery is associated with bee pollination, delayed dehiscence and colour crypsis of one anther whorl, and movement of that anther whorl upon dehiscence. Our mechanistic studies in heterantherous species show that bees notice, forage on and export pollen from each anther whorl when it is dehiscing, and that heteranthery promotes pollen export. We find no support for division of labour, but multifarious evidence that heteranthery is a mechanism for gradual pollen presentation that probably evolved through indirect male–male competition for siring success.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号