首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4267篇
  免费   428篇
  国内免费   1篇
  4696篇
  2023年   28篇
  2022年   64篇
  2021年   118篇
  2020年   79篇
  2019年   94篇
  2018年   116篇
  2017年   115篇
  2016年   158篇
  2015年   224篇
  2014年   250篇
  2013年   322篇
  2012年   340篇
  2011年   341篇
  2010年   171篇
  2009年   164篇
  2008年   218篇
  2007年   258篇
  2006年   234篇
  2005年   183篇
  2004年   161篇
  2003年   158篇
  2002年   146篇
  2001年   89篇
  2000年   77篇
  1999年   72篇
  1998年   40篇
  1997年   44篇
  1996年   35篇
  1995年   32篇
  1994年   35篇
  1993年   18篇
  1992年   26篇
  1991年   25篇
  1990年   21篇
  1989年   30篇
  1988年   14篇
  1987年   15篇
  1986年   20篇
  1985年   15篇
  1984年   10篇
  1983年   11篇
  1982年   11篇
  1980年   6篇
  1978年   10篇
  1977年   14篇
  1975年   7篇
  1972年   11篇
  1969年   7篇
  1967年   7篇
  1966年   11篇
排序方式: 共有4696条查询结果,搜索用时 15 毫秒
81.
Hypothalamic thyrotropin-releasing hormone (TRH) stimulates thyroid-stimulating hormone (TSH) secretion from the anterior pituitary. TSH then initiates thyroid hormone (TH) synthesis and release from the thyroid gland. Although opposing TRH and TH inputs regulate the hypothalamic-pituitary-thyroid axis, TH negative feedback is thought to be the primary regulator. This hypothesis, however, has yet to be proven in vivo. To elucidate the relative importance of TRH and TH in regulating the hypothalamic-pituitary-thyroid axis, we have generated mice that lack either TRH, the beta isoforms of TH receptors (TRbeta KO), or both (double KO). TRbeta knock-out (KO) mice have significantly higher TH and TSH levels compared with wild-type mice, in contrast to double KO mice, which have reduced TH and TSH levels. Unexpectedly, hypothyroid double KO mice also failed to mount a significant rise in serum TSH levels, and pituitary TSH immunostaining was markedly reduced compared with all other hypothyroid mouse genotypes. This impaired TSH response, however, was not due to a reduced number of pituitary thyrotrophs because thyrotroph cell number, as assessed by counting TSH immunopositive cells, was restored after chronic TRH treatment. Thus, TRH is absolutely required for both TSH and TH synthesis but is not necessary for thyrotroph cell development.  相似文献   
82.
The mitochondrial amidoxime reducing component mARC is a newly discovered molybdenum enzyme that is presumed to form the catalytical part of a three-component enzyme system, consisting of mARC, heme/cytochrome b5, and NADH/FAD-dependent cytochrome b5 reductase. mARC proteins share a significant degree of homology to the molybdenum cofactor-binding domain of eukaryotic molybdenum cofactor sulfurase proteins, the latter catalyzing the post-translational activation of aldehyde oxidase and xanthine oxidoreductase. The human genome harbors two mARC genes, referred to as hmARC-1/MOSC-1 and hmARC-2/MOSC-2, which are organized in a tandem arrangement on chromosome 1. Recombinant expression of hmARC-1 and hmARC-2 proteins in Escherichia coli reveals that both proteins are monomeric in their active forms, which is in contrast to all other eukaryotic molybdenum enzymes that act as homo- or heterodimers. Both hmARC-1 and hmARC-2 catalyze the N-reduction of a variety of N-hydroxylated substrates such as N-hydroxy-cytosine, albeit with different specificities. Reconstitution of active molybdenum cofactor onto recombinant hmARC-1 and hmARC-2 proteins in the absence of sulfur indicates that mARC proteins do not belong to the xanthine oxidase family of molybdenum enzymes. Moreover, they also appear to be different from the sulfite oxidase family, because no cysteine residue could be identified as a putative ligand of the molybdenum atom. This suggests that the hmARC proteins and sulfurase represent members of a new family of molybdenum enzymes.  相似文献   
83.
The effects of N,N-dicarboxymethyl chitosan (DCMC) on the precipitation of insoluble calcium salts, namely phosphate, sulfate, oxalate, carbonate, bicarbonate and fluoride, and magnesium salts, namely phosphate and carbonate, were studied. Results indicated that the chelating ability of DCMC interfered effectively with the well-known physico-chemical behaviour of magnesium and calcium salts. Dicarboxymethyl chitosan formed self-sustaining gels upon mixing with calcium acetate, as a consequence of calcium chelation. DCMC mixed with calcium acetate and with disodium hydrogen phosphate in appropriate ratios (molar ratio Ca/DCMC close to 2.4) yielded a clear solution, from which, after dialysis and freeze-drying, an amorphous material was isolated containing an inorganic component about one half its weight. This compound was used for the treatment of bone lesions in experimental surgery and in dentistry. Bone tissue regeneration was promoted in sheep, leading to complete healing of otherwise non-healing surgical defects. Radiographic evidence of bone regeneration was observed in human patients undergoing apicectomies and avulsions. The DCMC–CaP chelate favoured osteogenesis while promoting bone mineralization.  相似文献   
84.
Reactivation of latent tuberculosis infection in TNF-deficient mice   总被引:10,自引:0,他引:10  
TNF-deficient mice are highly susceptible to Mycobacterium tuberculosis H37Rv infection. Here we asked whether TNF is required for postinfectious immunity in aerosol-infected mice. Chemotherapy for 4 wk commencing 2 wk postinfection reduced CFU to undetectable levels. While wild-type mice had a slight rise in CFU, but controlled infection upon cessation of chemotherapy, TNF-deficient mice developed reactivation of infection with high bacterial loads in lungs, spleen, and liver, which was fatal within 13-18 wk. The increased susceptibility of TNF-deficient mice was accompanied by diminished recruitment and activation of T cells and macrophages into the lung, with defective granuloma formation and reduced inducible NO synthase expression. Reduced chemokine production in the lung might explain suboptimal recruitment and activation of T cells and uncontrolled infection. Therefore, despite a massive reduction of the mycobacterial load by chemotherapy, TNF-deficient mice were unable to compensate and mount a protective immune response. In conclusion, endogenous TNF is critical to maintain latent tuberculosis infection, and in its absence no specific immunity is generated.  相似文献   
85.
Amyloid-like inclusions have been associated with Huntington''s disease (HD), which is caused by expanded polyglutamine repeats in the Huntingtin protein. HD patients exhibit a high incidence of cardiovascular events, presumably as a result of accumulation of toxic amyloid-like inclusions. We have generated a Drosophila model of cardiac amyloidosis that exhibits accumulation of PolyQ aggregates and oxidative stress in myocardial cells, upon heart-specific expression of Huntingtin protein fragments (Htt-PolyQ) with disease-causing poly-glutamine repeats (PolyQ-46, PolyQ-72, and PolyQ-102). Cardiac expression of GFP-tagged Htt-PolyQs resulted in PolyQ length-dependent functional defects that included increased incidence of arrhythmias and extreme cardiac dilation, accompanied by a significant decrease in contractility. Structural and ultrastructural analysis of the myocardial cells revealed reduced myofibrillar content, myofibrillar disorganization, mitochondrial defects and the presence of PolyQ-GFP positive aggregates. Cardiac-specific expression of disease causing Poly-Q also shortens lifespan of flies dramatically. To further confirm the involvement of oxidative stress or protein unfolding and to understand the mechanism of PolyQ induced cardiomyopathy, we co-expressed expanded PolyQ-72 with the antioxidant superoxide dismutase (SOD) or the myosin chaperone UNC-45. Co-expression of SOD suppressed PolyQ-72 induced mitochondrial defects and partially suppressed aggregation as well as myofibrillar disorganization. However, co-expression of UNC-45 dramatically suppressed PolyQ-72 induced aggregation and partially suppressed myofibrillar disorganization. Moreover, co-expression of both UNC-45 and SOD more efficiently suppressed GFP-positive aggregates, myofibrillar disorganization and physiological cardiac defects induced by PolyQ-72 than did either treatment alone. Our results demonstrate that mutant-PolyQ induces aggregates, disrupts the sarcomeric organization of contractile proteins, leads to mitochondrial dysfunction and increases oxidative stress in cardiomyocytes leading to abnormal cardiac function. We conclude that modulation of both protein unfolding and oxidative stress pathways in the Drosophila heart model can ameliorate the detrimental PolyQ effects, thus providing unique insights into the genetic mechanisms underlying amyloid-induced cardiac failure in HD patients.  相似文献   
86.
87.
The literature on sequencing as a tool for yeast molecular taxonomy is reviewed. Ribosomal DNA has been preferred for sequencing over other molecules such as mitochondrial DNA, and a large database is now available. rDNA consists of regions that evolve at different rates, allowing comparison of different levels of relationship among yeasts. Sequences of the 18S rDNA and the 25S rDNA have been largely used for yeast systematics and phylogeny, but the search for regions with increased resolving power has led to the study of the spacer regions of the rDNA. Few studies are concerned with signature sequences.  相似文献   
88.
KSRP is a single strand nucleic acid binding protein that controls gene expression at multiple levels. In this review we focus on the recent molecular, cellular, and structural insights into the mRNA decay promoting function of KSRP. We discuss also some aspects of KSRP-dependent microRNA maturation from precursors that are related to its mRNA destabilizing function. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   
89.

Background

Intrahepatocellular (IHCL) and intramyocellular (IMCL) lipids are ectopic lipid stores. Aerobic exercise results in IMCL utilization in subjects over a broad range of exercise capacity. IMCL and IHCL have been related to impaired insulin action at the skeletal muscle and hepatic level, respectively. The acute effect of aerobic exercise on IHCL is unknown. Possible regulatory factors include exercise capacity, insulin sensitivity and fat availability subcutaneous and visceral fat mass).

Aim

To concomitantly investigate the effect of aerobic exercise on IHCL and IMCL in healthy subjects, using Magnetic Resonance spectroscopy.

Methods

Normal weight, healthy subjects were included. Visit 1 consisted of a determination of VO2max on a treadmill. Visit 2 comprised the assessment of hepatic and peripheral insulin sensitivity by a two-step hyperinsulinaemic euglycaemic clamp. At Visit 3, subcutaneous and visceral fat mass were assessed by whole body MRI, IHCL and IMCL before and after a 2-hours aerobic exercise (50% of VO2max) using 1H-MR-spectroscopy.

Results

Eighteen volunteers (12M, 6F) were enrolled in the study (age, 37.6±3.2 years, mean±SEM; VO2max, 53.4±2.9 mL/kg/min). Two hours aerobic exercise resulted in a significant decrease in IMCL (−22.6±3.3, % from baseline) and increase in IHCL (+34.9±7.6, % from baseline). There was no significant correlation between the exercise-induced changes in IMCL and IHCL and exercise capacity, subcutaneous and visceral fat mass and hepatic or peripheral insulin sensitivity.

Conclusions

IMCL and IHCL are flexible ectopic lipid stores that are acutely influenced by physical exercise, albeit in different directions.

Trial Registration

ClinicalTrial.gov NCT00491582  相似文献   
90.
Despite being the main insect pest on soybean crops in the Americas, very few studies have approached the general biology of the lepidopteran Anticarsia gemmatalis and there is a paucity of studies with embryo formation and yolk mobilization in this species. In the present work, we identified an acid phosphatase activity in the eggs of A. gemmatalis (agAP) that we further characterized by means of biochemistry and cell biology experiments. By testing several candidate substrates, this enzyme proved chiefly active with phosphotyrosine; in vitro assays suggested a link between agAP activity and dephosphorylation of egg yolk phosphotyrosine. We also detected strong activity with endogenous and exogenous short chain polyphosphates (PolyP), which are polymers of phosphate residues involved in a number of physiological processes. Both agAP activity and PolyP were shown to initially concentrate in small vesicles clearly distinct from typically larger yolk granules, suggesting subcellular compartmentalization. As PolyP has been implicated in inhibition of yolk proteases, we performed in vitro enzymatic assays with a cysteine protease to test whether it would be inhibited by PolyP. This cysteine protease is prominent in Anticarsia egg homogenates. Accordingly, short chain PolyP was a potent inhibitor of cysteine protease. We thereby suggest that PolyP hydrolysis by agAP is a triggering mechanism of yolk mobilization in A. gemmatalis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号