首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16681篇
  免费   1235篇
  国内免费   812篇
  2024年   22篇
  2023年   170篇
  2022年   465篇
  2021年   801篇
  2020年   486篇
  2019年   622篇
  2018年   602篇
  2017年   442篇
  2016年   626篇
  2015年   944篇
  2014年   1058篇
  2013年   1190篇
  2012年   1458篇
  2011年   1337篇
  2010年   843篇
  2009年   735篇
  2008年   841篇
  2007年   794篇
  2006年   679篇
  2005年   608篇
  2004年   553篇
  2003年   430篇
  2002年   396篇
  2001年   323篇
  2000年   269篇
  1999年   250篇
  1998年   160篇
  1997年   159篇
  1996年   162篇
  1995年   115篇
  1994年   124篇
  1993年   84篇
  1992年   137篇
  1991年   106篇
  1990年   80篇
  1989年   83篇
  1988年   70篇
  1987年   73篇
  1986年   71篇
  1985年   52篇
  1984年   52篇
  1983年   42篇
  1982年   27篇
  1981年   15篇
  1980年   18篇
  1979年   23篇
  1977年   18篇
  1976年   15篇
  1973年   12篇
  1972年   12篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
951.
Each V, D, and J gene segment is flanked by a recombination signal sequence (RSS), composed of a conserved heptamer and nonamer separated by a 12- or 23-bp spacer. Variations from consensus in the heptamer or nonamer at specific positions can dramatically affect recombination frequency, but until recently, it had been generally held that only the length of the spacer, but not its sequence, affects the efficacy of V(D)J recombination. In this study, we show several examples in which the spacer sequence can significantly affect recombination frequencies. We show that the difference in spacer sequence alone of two V(H)S107 genes affects recombination frequency in recombination substrates to a similar extent as the bias observed in vivo. We show that individual positions in the spacer can affect recombination frequency, and those positions can often be predicted by their frequency in a database of RSS. Importantly, we further show that a spacer sequence that has an infrequently observed nucleotide at each position is essentially unable to support recombination in an extrachromosmal substrate assay, despite being flanked by a consensus heptamer and nonamer. This infrequent spacer sequence RSS shows only a 2-fold reduction of binding of RAG proteins, but the in vitro cleavage of this RSS is approximately 9-fold reduced compared with a good RSS. These data demonstrate that the spacer sequence should be considered to play an important role in the recombination efficacy of an RSS, and that the effect of the spacer occurs primarily subsequent to RAG binding.  相似文献   
952.
953.
954.
955.
Cervical cancer is a major world health problem for women, but the pathophysiology of this disease has received scant attention. Here we show that the growth and invasion of cervical cancer cells are strongly linked the expression and activity of the KCl cotransporter (KCC), an important regulator of the ionic and cellular osmotic homeostasis. Functional assays of KCl cotransport activation by osmotic swelling, staurosporine, and N-ethylmaleimide indicate that removal of the N-terminal 117 amino acids from KCC1 produces a dominant-negative loss-of-function phenotype for KCl cotransport in human cervical cancer cells. The capability for regulatory volume decrease is much attenuated in the loss-of-function KCC mutant cervical cancer cells. The loss-of-function KCC mutant cervical cancer cells exhibit inhibited cell growth accompanied by decreased activity of the cell cycle gene products retinoblastoma and cdc2 kinase. Reduced cellular invasiveness is in parallel by reduced expression of alpha v beta 3 and alpha 6 beta 4 integrins, accompanied by decreased activity of matrix metalloproteinase 2 and 9. Inhibition of tumor growth in SCID mice confirms the crucial role of KCC in promoting cervical cancer growth and invasion. Thus, blockade of KCl cotransport may be a useful therapeutic adjunctive strategy to retard or prevent cervical cancer invasion.  相似文献   
956.
Mutations in the human tau gene leading to aberrant splicing have been identified in FTDP-17, an autosomal dominant hereditary neurodegenerative disorder. Molecular mechanisms by which such mutations cause tau aberrant splicing were not understood. We characterized two mutations in exon 10 of the tau gene, N279K and Del280K. Our results revealed an exonic splicing enhancer element located in exon 10. The activity of this AG-rich splicing enhancer was altered by N279K and Del280K mutations. This exonic enhancer element interacts with human Tra2 beta protein. The interaction between Tra2 beta and the exonic splicing enhancer correlates with the activity of this enhancer element in stimulating splicing. Biochemical studies including in vitro splicing and RNA interference experiments in transfected cells support a role for Tra2 beta protein in regulating alternative splicing of human tau gene. Our results implicate the human tau gene as a target gene for the alternative splicing regulator Tra2 beta, suggesting that Tra2 beta may play a role in aberrant tau exon 10 alternative splicing and in the pathogenesis of tauopathies.  相似文献   
957.
Hyporesponsiveness to growth factors is one of the fundamental characteristics of senescent cells. We previously reported that the up-regulation of caveolin attenuates the growth factor response and the subsequent downstream signal cascades in senescent human diploid fibroblasts. Therefore, in the present experiment, we investigated the modulation of caveolin status in senescent cells to determine the effect of caveolin on mitogenic signaling efficiency and cell cycling. We reduced the level of caveolin-1 in senescent human diploid fibroblasts using its antisense oligonucleotides and small interfering RNA, and this resulted in the restoration of normal growth factor responses such as the increased phosphorylation of Erk, the nuclear translocation of p-Erk, and the subsequent activation of p-Elk upon epidermal growth factor stimulation. Moreover, DNA synthesis and the re-entry of senescent cells into cell cycle were resumed upon epidermal growth factor stimulation concomitantly with decreases in p53 and p21. Taken together, we conclude that the loss of mitogenic signaling in senescent cells is strongly related to their elevated levels of caveolin-1 and that the functional recovery of senescent cells at least in the terms of growth factor responsiveness and cell cycle entry might be achieved simply by lowering the caveolin level.  相似文献   
958.
959.
Cell surface retention sequence binding protein-1 (CRSBP-1) is a cell surface binding protein for the cell surface retention sequence (CRS) motif of the v-sis gene product (platelet-derived growth factor-BB). It has been shown to be responsible for cell surface retention of the v-sis gene product in v-sis-transformed cells (fibroblasts) and has been hypothesized to play a role in autocrine growth and transformation of these cells. Here we demonstrate that the CRSBP-1 cDNA cloned from bovine liver libraries encodes a 322-residue type I membrane protein containing a 23-residue signal peptide, a 215-residue cell surface domain, a 21-residue transmembrane domain, and a 63-residue cytoplasmic domain. CRSBP-1 expressed in transfected cells is an approximately 120-kDa disulfide-linked homodimeric glycoprotein and exhibits dual ligand (CRS-containing growth regulators (v-sis gene product and insulin-like growth factor binding protein-3, IGFBP-3) and hyaluronic acid) binding activity. CRSBP-1 overexpression (by stable transfection of cells with CRSBP-1 cDNA) enhances autocrine loop signaling, cell growth, and tumorigenicity (in mice) of v-sis-transformed cells. CRSBP-1 expression also enhances autocrine cell growth mediated by IGFBP-3 in human lung carcinoma cells (H1299 cells), which express very little, if any, endogenous CRSBP-1 and exhibits a mitogenic response to exogenous IGFBP-3, stably transfected with IGFBP-3 cDNA. However, CRSBP-1 overexpression does not affect growth of normal and transformed cells that do not produce these CRS-containing growth regulators. These results suggest that CRSBP-1 plays a role in autocrine regulation of cell growth mediated by growth regulators containing CRS.  相似文献   
960.
Inhibition of cyclin-dependent kinases (CDKs) by Thr14/Tyr15 phosphorylation is critical for normal cell cycle progression and is a converging event for several cell cycle checkpoints. In this study, we compared the relative contribution of inhibitory phosphorylation for cyclin A/B1-CDC2 and cyclin A/E-CDK2 complexes. We found that inhibitory phosphorylation plays a major role in the regulation of CDC2 but only a minor role for CDK2 during the unperturbed cell cycle of HeLa cells. The relative importance of inhibitory phosphorylation of CDC2 and CDK2 may reflect their distinct cellular functions. Despite this, expression of nonphosphorylation mutants of both CDC2 and CDK2 triggered unscheduled histone H3 phosphorylation early in the cell cycle and was cytotoxic. DNA damage by a radiomimetic drug or replication block by hydroxyurea stimulated a buildup of cyclin B1 but was accompanied by an increase of inhibitory phosphorylation of CDC2. After DNA damage and replication block, all cyclin-CDK pairs that control S phase and mitosis were to different degrees inhibited by phosphorylation. Ectopic expression of nonphosphorylated CDC2 stimulated DNA replication, histone H3 phosphorylation, and cell division even after DNA damage. Similarly, a nonphosphorylation mutant of CDK2, but not CDK4, disrupted the G2 DNA damage checkpoint. Finally, CDC25A, CDC25B, a dominant-negative CHK1, but not CDC25C or a dominant-negative WEE1, stimulated histone H3 phosphorylation after DNA damage. These data suggest differential contributions for the various regulators of Thr14/Tyr15 phosphorylation in normal cell cycle and during the DNA damage checkpoint.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号