全文获取类型
收费全文 | 15080篇 |
免费 | 1128篇 |
国内免费 | 825篇 |
专业分类
17033篇 |
出版年
2024年 | 32篇 |
2023年 | 194篇 |
2022年 | 495篇 |
2021年 | 768篇 |
2020年 | 461篇 |
2019年 | 591篇 |
2018年 | 568篇 |
2017年 | 408篇 |
2016年 | 570篇 |
2015年 | 855篇 |
2014年 | 960篇 |
2013年 | 1077篇 |
2012年 | 1304篇 |
2011年 | 1193篇 |
2010年 | 747篇 |
2009年 | 659篇 |
2008年 | 741篇 |
2007年 | 693篇 |
2006年 | 591篇 |
2005年 | 520篇 |
2004年 | 458篇 |
2003年 | 370篇 |
2002年 | 329篇 |
2001年 | 308篇 |
2000年 | 255篇 |
1999年 | 230篇 |
1998年 | 148篇 |
1997年 | 147篇 |
1996年 | 150篇 |
1995年 | 110篇 |
1994年 | 111篇 |
1993年 | 81篇 |
1992年 | 134篇 |
1991年 | 102篇 |
1990年 | 78篇 |
1989年 | 78篇 |
1988年 | 63篇 |
1987年 | 71篇 |
1986年 | 64篇 |
1985年 | 50篇 |
1984年 | 48篇 |
1983年 | 41篇 |
1982年 | 24篇 |
1981年 | 13篇 |
1980年 | 16篇 |
1979年 | 19篇 |
1977年 | 14篇 |
1976年 | 11篇 |
1973年 | 10篇 |
1972年 | 10篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Comparison of the expression of Bacillus thuringiensis full-length and N-terminally truncated vip3A gene in Escherichia coli 总被引:2,自引:0,他引:2
AIMS: Studies were performed to demonstrate the function of the putative signal peptide of Vip3A proteins in Escherichia coli. METHODS AND RESULTS: The full-length vip3A-S184 gene was isolated from a soil-isolated Bacillus thuringiensis, and the vip3AdeltaN was constructed by deleting 81 nucleotides at the 5'-terminus of vip3A-S184. Both were transformed and expressed in E. coli. About 19.2% of Vip3A-S184 proteins secreted soluble proteins and others formed inclusion bodies in the periplasmic space. In contrast, the Vip3AdeltaN was insoluble and formed inclusion bodies in the cytoplasm. Bioassay indicated that Vip3A-S184 showed different toxicity against Spodoptera exigua, Helicoverpa armigera and S. litura, but Vip3AdeltaN showed no toxicity to either of them because of the deletion of the first 27 amino acids at the N-terminus. CONCLUSIONS: The results suggest that the deleted N-terminal sequences were essential for the secretion of Vip3A-S184 protein in E. coli and might be required for toxicity. SIGNIFICANCE AND IMPACT OF THE STUDY: The function of the putative signal peptide of Vip3A protein in E. coli was investigated. These would be helpful to make clear the unknown secretion pathway of Vip3A protein in B. thuringiensis and determine the receptor-binding domain or toxic fragment of Vip3A-S184 protein. 相似文献
72.
Due to motilin's relation to the migrating motor complex (MMC), the physiology of motilin has been mostly studied in man and dog. The cat does not have an MMC pattern, and little is known about cat motilin. Therefore we identified the cat motilin precursor (GenBank accession no. AF127917) and developed a quantitative polymerase chain reaction (PCR) to explore its distribution in the gastrointestinal tract and in the central nervous system (CNS). The precursor is closely related to the dog precursor and consists of an open reading frame of 348bp encoding the signal peptide (25 amino acids), the motilin sequence (22 amino acids) and the motilin associated peptide (69 amino acids). One amino acid of the signal peptide was subject to gene polymorphism. Quantification of motilin messenger RNA (mRNA) was for the first time achieved. It is most abundant in the gastrointestinal tract, with the highest concentration in the duodenum, the lowest in the colon and is not detectable in the corpus. However an important expression was also observed in several regions of the CNS, except the striatum and cerebral cortex. The highest level was in the hypothalamus (although 23-fold lower than in the duodenum), the lowest level in the pons. Moderate levels were found in the thyroid. These data suggest that the physiological role of motilin may extend beyond its effect on gastrointestinal motility. 相似文献
73.
Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts 总被引:14,自引:0,他引:14
Cohen AW Park DS Woodman SE Williams TM Chandra M Shirani J Pereira de Souza A Kitsis RN Russell RG Weiss LM Tang B Jelicks LA Factor SM Shtutin V Tanowitz HB Lisanti MP 《American journal of physiology. Cell physiology》2003,284(2):C457-C474
Recently, development ofa caveolin-1-deficient (Cav-1 null) mouse model has allowed thedetailed analysis of caveolin-1's function in the context of awhole animal. Interestingly, we now report that the hearts ofCav-1 null mice are markedly abnormal, despite the fact that caveolin-1is not expressed in cardiac myocytes. However, caveolin-1 is abundantlyexpressed in the nonmyocytic cells of the heart, i.e., cardiacfibroblasts and endothelia. Quantitative imaging studies of Cav-1 nullhearts demonstrate a significantly enlarged right ventricular cavityand a thickened left ventricular wall with decreased systolic function.Histological analysis reveals myocyte hypertrophy withinterstitial/perivascular fibrosis. Because caveolin-1 is thought toact as a negative regulator of the p42/44 MAP kinase cascade, weperformed Western blot analysis with phospho-specific antibodies thatonly recognize activated ERK1/2. As predicted, the p42/44 MAP kinasecascade is hyperactivated in Cav-1 null heart tissue (i.e.,interstitial fibrotic lesions) and isolated cardiac fibroblasts. Inaddition, endothelial and inducible nitric oxide synthase levels aredramatically upregulated. Thus loss of caveolin-1 expression drivesp42/44 MAP kinase activation and cardiac hypertrophy. 相似文献
74.
Gang Tang Li-wei Qian Gao-feng Wei Hong-sheng Wang 《Computer methods in biomechanics and biomedical engineering》2013,16(3):275-283
Muscle force estimation (MFE) has become more and more important in exploring principles of pathological movement, studying functions of artificial muscles, making surgery plan for artificial joint replacement, improving the biomechanical effects of treatments and so on. At present, existing software are complex for professionals, so we have developed a new software named as concise MFE (CMFE). CMFE which provides us a platform to analyse muscle force in various actions includes two MFE methods (static optimisation method and electromyographic-based method). Common features between these two methods have been found and used to improve CMFE. A case studying the major muscles of lower limb of a healthy subject walking at normal speed has been presented. The results are well explained from the effect of the motion produced by muscles during movement. The development of this software can improve the accuracy of the motion simulations and can provide a more extensive and deeper insight in to muscle study. 相似文献
75.
目前,对胚状体发生过程中的生理生化研究表明,这一过程伴随有核酸、蛋白质等大分子物质合成速度的增加及与胚胎发生有关的特异性蛋白的合成;一些同工酶,如过氧化物酶、脂酶、细胞色素氧化酶和谷氨酸脱氢酶 相似文献
76.
Simvastatin is an important cholesterol lowering compound and is currently synthesized from the natural product lovastatin via multistep chemical synthesis. We have previously reported the use of an Escherichia coli strain BL21(DE3)/pAW31 as the host for whole-cell biocatalytic conversion of monacolin J acid to simvastatin acid. During fermentation and bioconversion, unknown E. coli enzyme(s) hydrolyzed the membrane permeable thioester substrate dimethylbutyryl-S-methyl mercaptopropionate (DMB-S-MMP) to the free acid, significantly decreased the efficiencies of the whole-cell bioconversion and the downstream purification steps. Using the Keio K-12 Singe-Gene Knockout collection, we identified BioH as the sole enzyme responsible for the observed substrate hydrolysis. Purification and reconstitution of E. coli BioH activity in vitro confirmed its function. BioH catalyzed the rapid hydrolysis of DMB-S-MMP with kcat and Km values of 260+/-45 s(-1) and 229+/-26 microM, respectively. This is in agreement with previous reports that BioH can function as a carboxylesterase towards fatty acid esters. YT2, which is a delta bioH mutant of BL21(DE3), did not hydrolyze DMB-S-MMP during prolonged fermentation and was used as an alternative host for whole-cell biocatalysis. The rate of simvastatin acid synthesis in YT2 was significantly faster than in BL21(DE3) and 99% conversion of 15 mM simvastatin acid in less than 12 h was achieved. Furthermore, the engineered host required significantly less DMB-S-MMP to be added to accomplish complete conversion. Finally, simvastatin acid synthesized using YT2 can be readily purified from fermentation broth and no additional steps to remove the hydrolyzed dimethylbutyryl-S-mercaptopropionic acid is required. Together, the proteomic and metabolic engineering approaches render the whole-cell biocatalytic process more robust and economically attractive. 相似文献
77.
Xiao Y Lan L Yin C Deng X Baker D Zhou JM Tang X 《Molecular plant-microbe interactions : MPMI》2007,20(3):223-234
The Pseudomonas syringae type III secretion system (T3SS) is induced during interaction with the plant or culture in minimal medium (MM). How the bacterium senses these environments to activate the T3SS is poorly understood. Here, we report the identification of a novel two-component system (TCS), RhpRS, that regulates the induction of P. syringae T3SS genes. The rhpR and rhpS genes are organized in an operon with rhpR encoding a putative TCS response regulator and rhpS encoding a putative biphasic sensor kinase. Transposon insertion in rhpS severely reduced the induction of P. syringae T3SS genes in the plant as well as in MM and significantly compromised the pathogenicity on host plants and hypersensitive response-inducing activity on nonhost plants. However, deletion of the rhpRS locus allowed the induction of T3SS genes to the same level as in the wild-type strain and the recovery of pathogenicity upon infiltration into plants. Overexpression of RhpR in the deltarhpRS deletion strain abolished the induction of T3SS genes. However, overexpression of RhpR in the wild-type strain or overexpression of RhpR(D70A), a mutant of the predicted phosphorylation site of RhpR, in the deltarhpRS deletion strain only slightly reduced the induction of T3SS genes. Based on these results, we propose that the phosphorylated RhpR represses the induction of T3SS genes and that RhpS reverses phosphorylation of RhpR under the T3SS-inducing conditions. Epistasis analysis indicated that rhpS and rhpR act upstream of hrpR to regulate T3SS genes. 相似文献
78.
79.
Plasmacytoid dendritic cells (pDCs) represent a unique and crucial immune cell population capable of producing large amounts
of type I interferons (IFNs) in response to viral infection. The function of pDCs as the professional type I IFN-producing
cells is linked to their selective expression of Toll-like receptor 7 (TLR7) and TLR9, which sense viral nucleic acids within
the endosomal compartments. Type I IFNs produced by pDCs not only directly inhibit viral replication but also play an essential
role in linking the innate and adaptive immune system. The aberrant activation of pDCs by self nucleic acids through TLR signaling
and the ongoing production of type I IFNs do occur in some autoimmune diseases. Therefore, pDC may serve as an attractive
target for therapeutic manipulations of the immune system to treat viral infectious diseases and autoimmune diseases. 相似文献
80.
Mice lacking Niemann-Pick C1-Like 1 (NPC1L1) (NPC1L1(-/-)mice) exhibit a defect in intestinal absorption of cholesterol and phytosterols. However, wild-type (WT) mice do not efficiently absorb and accumulate phytosterols either. Cell-based studies show that NPC1L1 is a much weaker transporter for phytosterols than cholesterol. In this study, we examined the role of NPC1L1 in phytosterol and cholesterol trafficking in mice lacking ATP-binding cassette (ABC) transporters G5 and G8 (G5/G8(-/-) mice). G5/G8(-/-) mice develop sitosterolemia, a genetic disorder characterized by the accumulation of phytosterols in blood and tissues. We found that mice lacking ABCG5/G8 and NPC1L1 [triple knockout (TKO) mice] did not accumulate phytosterols in plasma and the liver. TKO mice, like G5/G8(-/-) mice, still had a defect in hepatobiliary cholesterol secretion, which was consistent with TKO versus NPC1L1(-/-) mice exhibiting a 52% reduction in fecal cholesterol excretion. Because fractional cholesterol absorption was reduced similarly in NPC1L1(-/-) and TKO mice, by subtracting fecal cholesterol excretion in TKO mice from NPC1L1(-/-) mice, we estimated that a 25g NPC1L1(-/-) mouse may secrete about 4 mumol of cholesterol daily via the G5/G8 pathway. In conclusion, NPC1L1 is essential for phytosterols to enter the body in mice. 相似文献