首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
  2012年   4篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1976年   1篇
  1971年   1篇
  1960年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
11.

Motivation

Species tree estimation from gene trees can be complicated by gene duplication and loss, and “gene tree parsimony” (GTP) is one approach for estimating species trees from multiple gene trees. In its standard formulation, the objective is to find a species tree that minimizes the total number of gene duplications and losses with respect to the input set of gene trees. Although much is known about GTP, little is known about how to treat inputs containing some incomplete gene trees (i.e., gene trees lacking one or more of the species).

Results

We present new theory for GTP considering whether the incompleteness is due to gene birth and death (i.e., true biological loss) or taxon sampling, and present dynamic programming algorithms that can be used for an exact but exponential time solution for small numbers of taxa, or as a heuristic for larger numbers of taxa. We also prove that the “standard” calculations for duplications and losses exactly solve GTP when incompleteness results from taxon sampling, although they can be incorrect when incompleteness results from true biological loss. The software for the DP algorithm is freely available as open source code at https://github.com/smirarab/DynaDup.
  相似文献   
12.
We describe the structure–activity relationship of the C1-group of pyrano[3,4-b]indole based inhibitors of HCV NS5B polymerase. Further exploration of the allosteric binding site led to the discovery of the significantly more potent compound 12.  相似文献   
13.
14.
Identifying common patterns among area cladograms that arise in historical biogeography is an important tool for biogeographical inference. We develop the first rigorous formalization of these pattern-identification problems. We develop metrics to compare area cladograms. We define the maximum agreement area cladogram (MAAC) and we develop efficient algorithms for finding the MAAC of two area cladograms, while showing that it is NP-hard to find the MAAC of several binary area cladograms. We also describe a linear-time algorithm to identify if two area cladograms are identical  相似文献   
15.
MOTIVATION: Phylogenetic analyses often produce thousands of candidate trees. Biologists resolve the conflict by computing the consensus of these trees. Single-tree consensus as postprocessing methods can be unsatisfactory due to their inherent limitations. RESULTS: In this paper we present an alternative approach by using clustering algorithms on the set of candidate trees. We propose bicriterion problems, in particular using the concept of information loss, and new consensus trees called characteristic trees that minimize the information loss. Our empirical study using four biological datasets shows that our approach provides a significant improvement in the information content, while adding only a small amount of complexity. Furthermore, the consensus trees we obtain for each of our large clusters are more resolved than the single-tree consensus trees. We also provide some initial progress on theoretical questions that arise in this context.  相似文献   
16.
The absorption of dietary non-heme iron by intestinal enterocytes is crucial to the maintenance of body iron homeostasis. This process must be tightly regulated since there are no distinct mechanisms for the excretion of excess iron from the body. An insight into the cellular mechanisms has recently been provided by expression cloning of a divalent cation transporter (DCT1) from rat duodenum and positional cloning of its human homologue, Nramp2. Here we demonstrate that Nramp2 is expressed in the apical membrane of the human intestinal epithelial cell line, Caco 2 TC7, and is associated with functional iron transport in these cells with a substrate preference for iron over other divalent cations. Iron transport occurs by a proton-dependent mechanism, exhibiting a concurrent intracellular acidification. Taken together, these data suggest that the expression of the Nramp2 transporter in human enterocytes may play an important role in intestinal iron absorption.  相似文献   
17.
We present new methods for reconstructing reticulate evolution of species due to events such as horizontal transfer or hybrid speciation; both methods are based upon extensions of Wayne Maddison's approach in his seminal 1997 paper. Our first method is a polynomial time algorithm for constructing phylogenetic networks from two gene trees contained inside the network.We allow the network to have an arbitrary number of reticulations, but we limit the reticulation in the network so that the cycles in the network are node-disjoint ("galled"). Our second method is a polynomial time algorithm for constructing networks with one reticulation, where we allow for errors in the estimated gene trees. Using simulations, we demonstrate improved performance of this method over both NeighborNet and Maddison's method.  相似文献   
18.
Absolute fast converging phylogenetic reconstruction methods are provably guaranteed to recover the true tree with high probability from sequences that grow only polynomially in the number of leaves, once the edge lengths are bounded arbitrarily from above and below. Only a few methods have been determined to be absolute fast converging; these have all been developed in just the last few years, and most are polynomial time. In this paper, we compare pre-existing fast converging methods as well as some new polynomial time methods that we have developed. Our study, based upon simulating evolution under a wide range of model conditions, establishes that our new methods outperform both neighbor joining and the previous fast converging methods, returning very accurate large trees, when these other methods do poorly.  相似文献   
19.
Because biological processes can result in different loci having different evolutionary histories, species tree estimation requires multiple loci from across multiple genomes. While many processes can result in discord between gene trees and species trees, incomplete lineage sorting (ILS), modeled by the multi-species coalescent, is considered to be a dominant cause for gene tree heterogeneity. Coalescent-based methods have been developed to estimate species trees, many of which operate by combining estimated gene trees, and so are called "summary methods". Because summary methods are generally fast (and much faster than more complicated coalescent-based methods that co-estimate gene trees and species trees), they have become very popular techniques for estimating species trees from multiple loci. However, recent studies have established that summary methods can have reduced accuracy in the presence of gene tree estimation error, and also that many biological datasets have substantial gene tree estimation error, so that summary methods may not be highly accurate in biologically realistic conditions. Mirarab et al. (Science 2014) presented the "statistical binning" technique to improve gene tree estimation in multi-locus analyses, and showed that it improved the accuracy of MP-EST, one of the most popular coalescent-based summary methods. Statistical binning, which uses a simple heuristic to evaluate "combinability" and then uses the larger sets of genes to re-calculate gene trees, has good empirical performance, but using statistical binning within a phylogenomic pipeline does not have the desirable property of being statistically consistent. We show that weighting the re-calculated gene trees by the bin sizes makes statistical binning statistically consistent under the multispecies coalescent, and maintains the good empirical performance. Thus, "weighted statistical binning" enables highly accurate genome-scale species tree estimation, and is also statistically consistent under the multi-species coalescent model. New data used in this study are available at DOI: http://dx.doi.org/10.6084/m9.figshare.1411146, and the software is available at https://github.com/smirarab/binning.  相似文献   
20.
Liu K  Linder CR  Warnow T 《PloS one》2011,6(11):e27731
Statistical methods for phylogeny estimation, especially maximum likelihood (ML), offer high accuracy with excellent theoretical properties. However, RAxML, the current leading method for large-scale ML estimation, can require weeks or longer when used on datasets with thousands of molecular sequences. Faster methods for ML estimation, among them FastTree, have also been developed, but their relative performance to RAxML is not yet fully understood. In this study, we explore the performance with respect to ML score, running time, and topological accuracy, of FastTree and RAxML on thousands of alignments (based on both simulated and biological nucleotide datasets) with up to 27,634 sequences. We find that when RAxML and FastTree are constrained to the same running time, FastTree produces topologically much more accurate trees in almost all cases. We also find that when RAxML is allowed to run to completion, it provides an advantage over FastTree in terms of the ML score, but does not produce substantially more accurate tree topologies. Interestingly, the relative accuracy of trees computed using FastTree and RAxML depends in part on the accuracy of the sequence alignment and dataset size, so that FastTree can be more accurate than RAxML on large datasets with relatively inaccurate alignments. Finally, the running times of RAxML and FastTree are dramatically different, so that when run to completion, RAxML can take several orders of magnitude longer than FastTree to complete. Thus, our study shows that very large phylogenies can be estimated very quickly using FastTree, with little (and in some cases no) degradation in tree accuracy, as compared to RAxML.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号