首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11973篇
  免费   895篇
  国内免费   4篇
  12872篇
  2022年   64篇
  2021年   97篇
  2020年   76篇
  2019年   106篇
  2018年   113篇
  2017年   134篇
  2016年   177篇
  2015年   242篇
  2014年   338篇
  2013年   678篇
  2012年   563篇
  2011年   573篇
  2010年   394篇
  2009年   360篇
  2008年   569篇
  2007年   581篇
  2006年   532篇
  2005年   525篇
  2004年   547篇
  2003年   538篇
  2002年   504篇
  2001年   456篇
  2000年   472篇
  1999年   376篇
  1998年   154篇
  1997年   144篇
  1996年   120篇
  1995年   124篇
  1994年   122篇
  1993年   105篇
  1992年   271篇
  1991年   241篇
  1990年   235篇
  1989年   232篇
  1988年   227篇
  1987年   187篇
  1986年   196篇
  1985年   166篇
  1984年   121篇
  1983年   134篇
  1982年   112篇
  1981年   74篇
  1980年   77篇
  1979年   121篇
  1978年   72篇
  1977年   73篇
  1975年   55篇
  1973年   59篇
  1972年   53篇
  1970年   51篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
131.
132.
133.
During bacterial degradation of methoxylated lignin monomers, such as vanillin and vanillic acid, formaldehyde is released through the reaction catalyzed by vanillic acid demethylase. When Burkholderia cepacia TM1 was grown on vanillin or vanillic acid as the sole carbon source, the enzymes 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI) were induced. These enzymes were also expressed during growth on Luria-Bertani medium containing formaldehyde. To understand the roles of these enzymes, the hps and phi genes from a methylotrophic bacterium, Methylomonas aminofaciens 77a, were introduced into B. cepacia TM1. The transformant strain constitutively expressed the genes for HPS and PHI, and these activities were two- or threefold higher than the activities in the wild strain. Incorporation of [14C]formaldehyde into the cell constituents was increased by overexpression of the genes. Furthermore, the degradation of vanillic acid and the growth yield were significantly improved at a high concentration of vanillic acid (60 mM) in the transformant strain. These results suggest that HPS and PHI play significant roles in the detoxification and assimilation of formaldehyde. This is the first report that enhancement of the HPS/PHI pathway could improve the degradation of vanillic acid in nonmethylotrophic bacteria.  相似文献   
134.
Src kinase activity is essential for osteoclast function   总被引:21,自引:0,他引:21  
Deletion of the c-src gene impairs osteoclast bone resorbing activity, causing osteopetrosis. Although it has been concluded that restoring only the Src adaptor function at least partly rescues the cell attachment and skeletal phenotypes, the contribution of Src kinase activity remains controversial. Src forms a complex with Pyk2 and Cbl after adhesion-induced stimulation of alpha(V)beta(3) integrin. To demonstrate the importance of the Pyk2-Src association in osteoclasts and to distinguish the contributions of the Src adaptor and kinase activities in cytoskeletal organization and osteoclast function, we expressed mutants of Src and Pyk2 in osteoclasts using adenovirus vectors. Eliminating the Src-binding site on Pyk2 (Pyk2(Y402F)) markedly inhibited bone resorption by osteoclast-like cells, whereas kinase-dead Pyk2 had little effect. Kinase-dead Src, unlike kinase-dead Pyk2, markedly inhibited the bone-resorbing activity of wild type osteoclasts and failed to significantly restore bone-resorbing activity to Src(-/-) osteoclast-like cells. Activation of Src kinase by overexpressing kinase-dead Csk failed to reverse the inhibitory effect of Pyk2(Y402F), suggesting that osteoclastic bone resorption requires both c-Src kinase activity and the targeting of Src kinase by Pyk2. Src-catalyzed phosphorylation of Cbl on Tyr-731 is reported to induce the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function. Expressing the Cbl(Y731F) mutant in osteoclasts markedly reduced their bone resorbing activity, suggesting that phosphorylation of Cbl(Y731) and the subsequent recruitment and activation of phosphatidylinositol 3-kinase may be critical signaling events downstream of Src in osteoclasts.  相似文献   
135.
1,2-Didocosahexaenoyl phosphatidylcholine (PC), which has highly unsaturated fatty acid at both sn-1 and sn-2 positions of glycerol, is a characteristic molecular species of bonito muscle. To examine the involvement of a de novo route in its synthesis, the molecular species of phosphatidic acid (PA) were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a 1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-olato dizinc(II) complex, a novel phosphate-capture molecule. However, 1,2-didocosahexaenoyl species could not be detected. Next, 1,2-didocosahexaenoyl PC synthesis by the cytosolic lysophosphatidylcholine (LPC)/transacylase was examined using endogenous LPC from bonito muscle, in which the 2-docosahexaenoyl species is abundant. The LPC/transacylase synthesized 1,2-didocosahexaenoyl PC as the most abundant molecular species. For further characterization, the LPC/transacylase was purified to homogeneity from the 100,000 x g supernatant of bonito muscle. The isolated LPC/transacylase is a labile glycoprotein with molecular mass of 52 kDa including a 5-kDa sugar moiety. The LPC/transacylase showed a PC synthesis (transacylase activity) below and above the critical micelle concentration of substrate LPC, and fatty acid release (lysophospholipase activity) was always smaller than the transacylase activity, even with a monomeric substrate. These results suggest that the LPC/transacylase is responsible for the synthesis of 1,2-didocosahexaenoyl PC.  相似文献   
136.
A new type of dendritic molecules Gd-DTPA-XDA-D1-Glc(OH), which work as a functionalized ligand coordinating gadolinium(III) ion at the center of their frameworks with two glucose moieties on the molecular surfaces, were readily synthesized with high yield. The structures were established by IR, 1H, 13C NMR, and mass spectral studies. Its bio-distribution patterns were evaluated on rats.  相似文献   
137.
Trade‐off relationships are considered key to understanding the mechanisms supporting the coexistence of multiple species within kelp beds. Thus, information on trade‐offs is expected to contribute to conservation of kelp bed diversity. To test the existence of a trade‐off between productivity and thallus toughness, thallus traits and relationships between the traits were examined for seven species of Laminariales including 24 populations. For each population, photosynthetic capacity per unit biomass (as A mass) and nitrogen (i.e., photosynthetic nitrogen‐use efficiency, PNUE), nitrogen content (as N mass), thallus mass per unit thallus area (as TMA) and force required to penetrate the thallus (as F p, a common index of leaf toughness in land plants by punch test) were determined. A mass increased with increasing N mass. Blades with high N mass showed high A mass. These blades may invest a large proportion of nitrogen to the photosynthetic parts, and consequently exhibit high metabolic rates. Moreover, blades with high N mass tended to be associated with low TMA, and N mass decreased with increasing TMA. A significant negative correlation was observed between TMA and A mass because of the linkage of high A mass with high N mass and high N mass associated with low TMA, while a significant positive correlation was observed between TMA and F p. The two correlations indicate the existence of a trade‐off between productivity and thallus toughness in Laminariales. PNUE showed a significant negative correlation with TMA, which also showed a significant positive correlation with F p as the index of thallus toughness, and therefore a trade‐off relationship between productivity and thallus toughness.  相似文献   
138.
Cholinergic neurons in the CNS are involved in synaptic plasticity and cognition. Both muscarinic and nicotinic acetylcholine receptors (nAChRs) influence plasticity and cognitive function. The mechanism underlying nAChR‐induced plasticity, however, has remained elusive. Here, we demonstrate morphological changes in dendritic spines following activation of α4β2* nAChRs, which are expressed on glutamatergic pre‐synaptic termini of cultured hippocampal neurons. Exposure of the neurons to nicotine resulted in a lateral enlargement of spine heads. This was abolished by dihydro‐β‐erythroidine, an antagonist of α4β2* nAChRs, but not by α‐bungarotoxin, an antagonist of α7 nAChRs. Tetanus toxin or a mixture of 2‐amino‐5‐phosphonovaleric acid and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, antagonists of NMDA‐ and AMPA‐type glutamate receptors, blocked the nicotine‐induced spine remodeling. In addition, nicotine exerted full spine‐enlarging response in the post‐synaptic neuron whose β2 nAChR expression was knocked down. Finally, pre‐treatment with nicotine enhanced the Ca2+‐response of the neurons to glutamate. These data suggest that nicotine influences the activity of glutamatergic neurotransmission through the activation of pre‐synaptic α4β2 nAChRs, resulting in the modulation of spinal architecture and responsiveness. The present findings may represent one of the cellular mechanisms underlying cholinergic tuning of brain function.

  相似文献   

139.
High-grade serous ovarian cancer (HGSOC) is the most aggressive histological type of epithelial ovarian cancer, which is characterized by a high frequency of somatic TP53 mutations. We performed exome analyses of tumors and matched normal tissues of 34 Japanese patients with HGSOC and observed a substantial number of patients without TP53 mutation (24%, 8/34). Combined with the results of copy number variation analyses, we subdivided the 34 patients with HGSOC into subtypes designated ST1 and ST2. ST1 showed intact p53 pathway and was characterized by fewer somatic mutations and copy number alterations. In contrast, the p53 pathway was impaired in ST2, which is characterized by abundant somatic mutations and copy number alterations. Gene expression profiles combined with analyses using the Gene Ontology resource indicate the involvement of specific biological processes (mitosis and DNA helicase) that are relevant to genomic stability and cancer etiology. In particular we demonstrate the presence of a novel subtype of patients with HGSOC that is characterized by an intact p53 pathway, with limited genomic alterations and specific gene expression profiles.  相似文献   
140.
The Rab3 small G protein family consists of four members, Rab3A, -3B, -3C, and -3D. Of these members, Rab3A regulates Ca(2+)-dependent neurotransmitter release. These small G proteins are activated by Rab3 GDP/GTP exchange protein (Rab3 GEP). To determine the function of Rab3 GEP during neurotransmitter release, we have knocked out Rab3 GEP in mice. Rab3 GEP-/- mice developed normally but died immediately after birth. Embryos at E18.5 showed no evoked action potentials of the diaphragm and gastrocnemius muscles in response to electrical stimulation of the phrenic and sciatic nerves, respectively. In contrast, axonal conduction of the spinal cord and the phrenic nerve was not impaired. Total numbers of synaptic vesicles, especially those docked at the presynaptic plasma membrane, were reduced at the neuromuscular junction approximately 10-fold compared with controls, whereas postsynaptic structures and functions appeared normal. Thus, Rab3 GEP is essential for neurotransmitter release and probably for formation and trafficking of the synaptic vesicles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号