首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9324篇
  免费   722篇
  国内免费   428篇
  10474篇
  2024年   22篇
  2023年   79篇
  2022年   236篇
  2021年   391篇
  2020年   272篇
  2019年   281篇
  2018年   316篇
  2017年   254篇
  2016年   373篇
  2015年   560篇
  2014年   615篇
  2013年   708篇
  2012年   802篇
  2011年   736篇
  2010年   466篇
  2009年   340篇
  2008年   475篇
  2007年   394篇
  2006年   380篇
  2005年   315篇
  2004年   269篇
  2003年   229篇
  2002年   225篇
  2001年   170篇
  2000年   187篇
  1999年   137篇
  1998年   85篇
  1997年   81篇
  1996年   77篇
  1995年   59篇
  1994年   63篇
  1993年   48篇
  1992年   90篇
  1991年   76篇
  1990年   77篇
  1989年   63篇
  1988年   47篇
  1987年   67篇
  1986年   45篇
  1985年   37篇
  1984年   33篇
  1983年   20篇
  1982年   25篇
  1980年   22篇
  1979年   26篇
  1978年   19篇
  1977年   21篇
  1975年   18篇
  1973年   21篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Cerebral spinal fluid (CSF) and structural imaging markers are suggested as biomarkers amended to existing diagnostic criteria of mild cognitive impairment (MCI) and Alzheimer''s disease (AD). But there is no clear instruction on which markers should be used at which stage of dementia. This study aimed to first investigate associations of the CSF markers as well as volumes and shapes of the hippocampus and lateral ventricles with MCI and AD at the baseline and secondly apply these baseline markers to predict MCI conversion in a two-year time using the Alzheimer''s Disease Neuroimaging Initiative (ADNI) cohort. Our results suggested that the CSF markers, including Aβ42, t-tau, and p-tau, distinguished MCI or AD from NC, while the Aβ42 CSF marker contributed to the differentiation between MCI and AD. The hippocampal shapes performed better than the hippocampal volumes in classifying NC and MCI, NC and AD, as well as MCI and AD. Interestingly, the ventricular volumes were better than the ventricular shapes to distinguish MCI or AD from NC, while the ventricular shapes showed better accuracy than the ventricular volumes in classifying MCI and AD. As the CSF markers and the structural markers are complementary, the combination of them showed great improvements in the classification accuracies of MCI and AD. Moreover, the combination of these markers showed high sensitivity but low specificity for predicting conversion from MCI to AD in two years. Hence, it is feasible to employ a cross-sectional sample to investigate dynamic associations of the CSF and imaging markers with MCI and AD and to predict future MCI conversion. In particular, the volumetric information may be good for the early stage of AD, while morphological shapes should be considered as markers in the prediction of MCI conversion to AD together with the CSF markers.  相似文献   
92.
93.
94.
In this study, after the expression of a pyruvate carboxylase gene (PYC) cloned from Meyerozyma guilliermondii in a marine-derived yeast Yarrowia lipolytica SWJ-1b, a transformant PG86 obtained had much higher PYC activity than Y. lipolytica SWJ-1b. At the same time, the PYC gene expression and citric acid (CA) production by the transformant PG86 were also greatly enhanced. When glucose concentration in the medium was 60.0 g L?1, CA concentration formed by the transformant PG86 was 34.02 g L?1, leading to a CA yield of 0.57 g g?1 of glucose. During a 10-L fed-batch fermentation, the final concentration of CA was 101.0 ± 1.3 g L?1, the yield was 0.89 g g?1 of glucose, the productivity was 0.42 g L?1 h?1 and only 5.93 g L?1 reducing sugar was left in the fermented medium within 240 h of the fed-batch fermentation. HPLC analysis showed that most of the fermentation products were CA.  相似文献   
95.
96.
Abstract

Phosphatidylinositol lipids are signaling molecules involved in nearly all aspects of cellular regulation. Production of phosphatidylinositol 4-phosphate (PI4P) has long been recognized as one of the first steps in generating poly-phosphatidylinositol phosphates involved in actin organization, cell migration, and signal transduction. In addition, progress over the last decade has brought to light independent roles for PI4P in membrane trafficking and lipid homeostasis. Here, we describe recent advances that reveal the breadth of processes regulated by PI4P, the spectrum of PI4P effectors, and the mechanisms of spatiotemporal control that coordinate crosstalk between PI4P and cellular signaling pathways.  相似文献   
97.
98.
99.
Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post‐translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin‐1) by RIPK4 (receptor‐interacting serine–threonine kinase 4) during epidermal differentiation. With genome‐editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo. Phosphorylation of PKP1's N‐terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK‐PKP1 signaling as novel axis involved in skin stratification and tumorigenesis.  相似文献   
100.
In this paper, photosynthetic characteristics of green leaves (GL) and green pseudobulbs (GPSB) of C3 orchid Oncidium Golden Wish were first studied. Light saturation for photosynthesis and maximum photosynthetic rates (P max) were significantly higher in GL than in GPSB. The results of the optimal PSII quantum yield (Fv/Fm ratio), electron transport rate (ETR), the effective photochemical quantum yield (ΔF/Fm′) and nonphotochemical quenching (NPQ) of Chl fluorescence revealed that GPSB had lower light utilization than that of GL. Significantly higher photosynthetic pigments were found in GL than in GPSB. Alteration of source/sink ratio had no impact on all photosynthetic parameters for both GL and GPSB after a short term of 3 days or even a long term of 2 weeks of treatments although there were significant decreases in GL carbohydrate concentration of GL-darkened plants by the end of the day. However, decreases of all photosynthetic parameters of GL were observed in GL-darkened plants after 4 weeks of treatment compared to those of fully illuminated (FI) and GPSB-darkened plants. These results indicate that the level of carbohydrates in GL plays an important role in regulating their photosynthesis. Due to their lower photosynthetic capacities, GPSB function mainly as sinks. Darkening GPSB up to 2 weeks did not affect their own P max and the P max of GL and thus, did not result in significant decreases of total carbohydrate concentration of GPSB. As GPSB store a large amount of carbohydrates, it could also act as a source when the level of carbohydrates decreased. Thus, GL could depend on GPSB carbohydrates to regulate their photosynthesis when their source capacity was removed. However, 4 weeks after treatments, photosynthetic capacities of GL were significantly lower in GL- and GPSB-darkened plants than in FI plants, which could be due to the lower total soluble and insoluble sugar concentrations of both GL and GPSB in these plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号