首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   644篇
  免费   35篇
  国内免费   1篇
  680篇
  2022年   4篇
  2021年   9篇
  2020年   3篇
  2019年   4篇
  2018年   8篇
  2017年   10篇
  2016年   12篇
  2015年   15篇
  2014年   20篇
  2013年   50篇
  2012年   22篇
  2011年   53篇
  2010年   28篇
  2009年   20篇
  2008年   36篇
  2007年   36篇
  2006年   48篇
  2005年   47篇
  2004年   42篇
  2003年   33篇
  2002年   31篇
  2001年   17篇
  2000年   10篇
  1999年   10篇
  1998年   3篇
  1997年   9篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   6篇
  1976年   1篇
  1974年   1篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1969年   3篇
  1968年   1篇
排序方式: 共有680条查询结果,搜索用时 0 毫秒
91.
This data paper reports litter fall data collected in a network of 21 forest sites in Japan. This is the largest litter fall data set freely available in Japan to date. The network is a part of the Monitoring Sites 1000 Project launched by the Ministry of the Environment, Japan. It covers subarctic to subtropical climate zones and the four major forest types in Japan. Twenty-three permanent plots in which usually 25 litter traps were installed were established in old-growth or secondary natural forests. Litter falls were collected monthly from 2004, and sorted into leaves, branches, reproductive structures and miscellaneous. The data provide seasonal patterns and inter-annual dynamics of litter falls, and their geographical patterns, and offer good opportunities for meta-analyses and comparative studies among forests.  相似文献   
92.
Temperature plays a significant role in the annual cycling between growth and dormancy of the herbaceous perennial chrysanthemum (Chrysanthemum morifolium Ramat.). After exposure to high summer temperatures, cool temperature triggers dormancy. The cessation of flowering and rosette formation by the cessation of elongation are characteristic of dormant plants, and can be stimulated by exogenous ethylene. Thus, the ethylene response pathway may be involved in temperature-induced dormancy of chrysanthemum. Transgenic chrysanthemums expressing a mutated ethylene receptor gene were used to assess this involvement. The transgenic lines showed reduced ethylene sensitivity: ethylene causes leaf yellowing in wild-type chrysanthemums, but leaves remained green in the transgenic lines. Extension growth and flowering of wild-type and transgenic lines varied between temperatures: at 20 degrees C, the transgenic lines showed the same stem elongation and flowering as the wild type; at cooler temperatures, the wild type formed rosettes with an inability to flower and entered dormancy, but some transgenic lines continued to elongate and flower. This supports the involvement of the ethylene response pathway in the temperature-induced dormancy of chrysanthemum. At the highest dosage of ethephon, an ethylene-releasing agent, wild-type plants formed rosettes with an inability to flower and became dormant, but one transgenic line did not. This confirms that dormancy is induced via the ethylene response pathway.  相似文献   
93.
Gametes of the marine green alga Ulva compressa L. are biflagellate and pear shaped, with one eyespot at the posterior end of the cell. The species is at an early evolutionary stage between isogamy and anisogamy. In the past, zygote formation of green algae was categorized solely by the relative sizes of gametes produced by two mating types (+ and ?). Recently, however, locations of cell fusion sites and/or mating structures of gametes have been observed to differ between mating types in several green algae (asymmetry of cell fusion site and/or mating structure positions). To use this asymmetry for determining gamete mating type, we explored a new method, field emission scanning electron microscopy (FE‐SEM), for visualizing the mating structure of U. compressa. When gametes were subjected to drying stress in the process of a conventional critical‐point‐drying method, a round structure was observed on the cell surfaces. In the mating type MGEC‐1 (mt+), this structure was located on the same side of the cell as the eyespot, whereas it was on the side opposite the eyespot in the mating type MGEC‐2 (mt?). The gametes fuse at the round structures. TEM showed an alignment of vesicles inside the cytoplasm directly below the round structures, which are indeed the mating structures. Serial sectioning and three‐dimensional construction of TEM micrographs confirmed the association of the mating structure with flagellar roots. The mating structure was associated with 1d root in the MGEC‐1 gamete but with 2d root in the MGEC‐2 gamete.  相似文献   
94.
The detailed in situ expression pattern of the Set-α gene has been studied. Previously we showed that Set-α is a differentially expressed gene in the embryonic mouse mandible at day 10.5 (E10.5) gestational age. Cells expressing Set-α were widely distributed in both the epithelial and underlying ectomesenchymal cells at E10.5. At E12, they were slightly aggregated in an area where tooth germ of the lower first molar is estimated to be formed. At E13.5, Set-α was strongly expressed in the tooth germ. At the cap stage, Set-α was expressed in the enamel organ and dental papilla. At the bell stage, Set-α was distinctly expressed in the inner enamel epithelial and dental papilla cells facing the inner enamel epithelial layer, which were intended to differentiate into ameloblasts and odontoblasts, respectively. Interestingly, Set-α was also expressed in several embryonic craniofacial tissues derived from the ectoderm. This study is the first report that Set-α is distinctly expressed in the developing tooth germ, and suggests that Set-α plays an important role in both the initiation and the growth of the tooth germ, as well as in the differentiation of ameloblasts and odontoblasts.  相似文献   
95.
96.
The unicellular green algae Chlorella ellipsoidea was used tostudy transient changes in the energy state of adenylates andthe redox states of pyridine nucleotides induced by environmentalchanges. The transition from anaerobic to aerobic conditionsin the dark induced a sharp rise in the ATP ratio [ATP/(ATP+ADP+AMP)],a sudden decrease in the NADH ratio [NADH/(NAD++NADPH)] anda transient drop in the NADPH ratio [NADPH/(NADP++NADPH)]. Illuminationafter a dark period under anaerobic, CO2-free conditions inducedsharp increases in the ATP and NADPH ratios and a slower decreasein the NADH ratio. Illumination under aerobic conditions, ineither the presence or absence of CO2, caused a sharp increasein the NADPH ratio, a small increase in the ATP ratio and aslower increase in the NADH ratio. In the presence of CO2, asubsequent large drop in the NADPH ratio occurred. Darkeningunder anaerobic, CO2-free conditions induced a sudden decreasein the ATP ratio, a temporary fall in the NADPH ratio and aslow increase in the NADH ratio. Darkening under aerobic conditionsinduced transient drops in the ATP and NADPH ratios and a suddendrop in the NADH ratio. The addition of CO2 to the atmospherewith illumination produced a decrease in all three parameters. These results are discussed in relation to current theoriesof the interaction between photosynthesis and respiration. Ourobservations indicate that the energy and reducing potentialsgenerated by photochemical processes are used for and controlother processes besides CO2 fixation in photosynthetic cells. (Received December 3, 1981; Accepted May 4, 1982)  相似文献   
97.
98.
In early pregnancy, trophoblasts and the fetus experience hypoxic and low-nutrient conditions; nevertheless, trophoblasts invade the uterine myometrium up to one third of its depth and migrate along the lumina of spiral arterioles, replacing the maternal endothelial lining. Here, we showed that autophagy, an intracellular bulk degradation system, occurred in extravillous trophoblast (EVT) cells under hypoxia in vitro and in vivo. An enhancement of autophagy was observed in EVTs in early placental tissues, which suffer from physiological hypoxia. The invasion and vascular remodeling under hypoxia were significantly reduced in autophagy-deficient EVT cells compared with wild-type EVT cells. Interestingly, soluble endoglin (sENG), which increased in sera in preeclamptic cases, suppressed EVT invasion by inhibiting autophagy. The sENG-inhibited EVT invasion was recovered by TGFB1 treatment in a dose-dependent manner. A high dose of sENG inhibited the vascular construction by EVT cells and human umbilical vein endothelial cells (HUVECs), meanwhile a low dose of sENG inhibited the replacement of HUVECs by EVT cells. A protein selectively degraded by autophagy, SQSTM1, accumulated in EVT cells in preeclamptic placental biopsy samples showing impaired autophagy. This is the first report showing that impaired autophagy in EVT contributes to the pathophysiology of preeclampsia.  相似文献   
99.
100.
Milk fat curdle in sewage is one of the refractory materials for active sludge treatment under low temperature conditions. For the purpose of solving this problem by using a bio-remediation agent, we screened Antarctic yeasts and isolated SK-4 strain from algal mat of sediments of Naga-ike, a lake in Skarvsnes, East Antarctica. The yeast strain showed high nucleotide sequence homologies (>99.6%) to Mrakia blollopis CBS8921T in ITS and D1/D2 sequences and had two unique characteristics when applied on an active sludge; i.e., it showed a potential to use various carbon sources and to grow under vitamin-free conditions. Indeed, it showed a biochemical oxygen demand (BOD) removal rate that was 1.25-fold higher than that of the control. We considered that the improved BOD removal rate by applying SK-4 strain was based on its lipase activity and characteristics. Finally, we purified the lipase from SK-4 and found that the enzyme was quite stable under wide ranges of temperatures and pH, even in the presence of various metal ions and organic solvents. SK-4, therefore, is a promising bio-remediation agent for cleaning up unwanted milk fat curdles from dairy milk wastewater under low temperature conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号