首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   10篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2018年   4篇
  2017年   6篇
  2016年   8篇
  2015年   9篇
  2014年   12篇
  2013年   14篇
  2012年   10篇
  2011年   14篇
  2010年   10篇
  2009年   11篇
  2008年   18篇
  2007年   13篇
  2006年   11篇
  2005年   15篇
  2004年   14篇
  2003年   20篇
  2002年   15篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
91.
The in vivo micronucleus assay working group of the International Workshop on Genotoxicity Testing (IWGT) discussed new aspects in the in vivo micronucleus (MN) test, including the regulatory acceptance of data derived from automated scoring, especially with regard to the use of flow cytometry, the suitability of rat peripheral blood reticulocytes to serve as the principal cell population for analysis, the establishment of in vivo MN assays in tissues other than bone marrow and blood (for example liver, skin, colon, germ cells), and the biological relevance of the single-dose-level test. Our group members agreed that flow cytometric systems to detect induction of micronucleated immature erythrocytes have advantages based on the presented data, e.g., they give good reproducibility compared to manual scoring, are rapid, and require only small quantities of peripheral blood. Flow cytometric analysis of peripheral blood reticulocytes has the potential to allow monitoring of chromosome damage in rodents and also other species as part of routine toxicology studies. It appears that it will be applicable to humans as well, although in this case the possible confounding effects of splenic activity will need to be considered closely. Also, the consensus of the group was that any system that meets the validation criteria recommended by the IWGT (2000) should be acceptable. A number of different flow cytometric-based micronucleus assays have been developed, but at the present time the validation data are most extensive for the flow cytometric method using anti-CD71 fluorescent staining especially in terms of inter-laboratory collaborative data. Whichever method is chosen, it is desirable that each laboratory should determine the minimum sample size required to ensure that scoring error is maintained below the level of animal-to-animal variation. In the second IWGT, the potential to use rat peripheral blood reticulocytes as target cells for the micronucleus assay was discussed, but a consensus regarding acceptability for regulatory purposes could not be reached at that time. Subsequent validation efforts, combined with accumulated published data, demonstrate that blood-derived reticulocytes from rats as well as mice are acceptable when young reticulocytes are analyzed under proper assay protocol and sample size. The working group reviewed the results of micronucleus assays using target cells/tissues other than hematopoietic cells. We also discussed the relevance of the liver micronucleus assay using young rats, and the importance of understanding the maturation of enzyme systems involved in the processes of metabolic activation in the liver of young rats. Although the consensus of the group was that the more information with regard to the metabolic capabilities of young rats would be useful, the published literature shows that young rats have sufficient metabolic capacity for the purposes of this assay. The use of young rats as a model for detecting MN induction in the liver offers a good alternative methodology to the use of partial hepatectomy or mitogenic stimulation. Additional data obtained from colon and skin MN models have been integrated into the data bases, enhancing confidence in the utility of these models. A fourth topic discussed by the working group was the regulatory acceptance of the single-dose-level assay. There was no consensus regarding the acceptability of a single dose level protocol when dose-limiting toxicity occurs. The use of a single dose level can lead to problems in data interpretation or to the loss of animals due to unexpected toxicity, making it necessary to repeat the study with additional doses. A limit test at a single dose level is currently accepted when toxicity is not dose-limiting.  相似文献   
92.
The mechanism underlying plaque-independent neuronal death in Alzheimer disease (AD), which is probably responsible for early cognitive decline in AD patients, remains unclarified. Here, we show that a toxic soluble Abeta assembly (TAbeta) is formed in the presence of liposomes containing GM1 ganglioside more rapidly and to a greater extent from a hereditary variant-type ("Arctic") Abeta than from wild-type Abeta. TAbeta is also formed from soluble Abeta through incubation with natural neuronal membranes prepared from aged mouse brains in a GM1 ganglioside-dependent manner. An oligomer-specific antibody (anti-Oligo) significantly suppresses TAbeta toxicity. Biophysical and structural analyses by atomic force microscopy and size exclusion chromatography revealed that TAbeta is spherical with diameters of 10-20 nm and molecular masses of 200-300 kDa. TAbeta induces neuronal death, which is abrogated by the small interfering RNA-mediated knockdown of nerve growth factor receptors, including TrkA and p75 neurotrophin receptor. Our results suggest that soluble Abeta assemblies, such as TAbeta, can cause plaque-independent neuronal death that favorably occurs in nerve growth factor-dependent neurons in the cholinergic basal forebrain in AD.  相似文献   
93.
94.

Aims

Calmodulin (CaM) plays a key role in modulating channel gating in ryanodine receptor (RyR2). Here, we investigated (a) the pathogenic role of CaM in the channel disorder in CPVT and (b) the possibility of correcting the CPVT-linked channel disorder, using knock-in (KI) mouse model with CPVT-associated RyR2 mutation (R2474S).

Methods and results

Transmembrane potentials were recorded in whole cell current mode before and after pacing (1–5 Hz) in isolated ventricular myocytes. CaM binding was assessed by incorporation of exogenous CaM fluorescently labeled with HiLyte Fluor® in saponin-permeabilized myocytes. In the presence of cAMP (1 μM) the apparent affinity of CaM binding to the RyR decreased in KI cells (Kd: 140–400 nM), but not in WT cells (Kd: 110–120 nM). Gly-Ser-His-CaM (GSH-CaM that has much higher RyR-binding than CaM) restored normal binding to the RyR of cAMP-treated KI cells (140 nM). Neither delayed afterdepolarization (DAD) nor triggered activity (TA) were observed in WT cells even at 5 Hz pacing, whereas both DAD and TA were observed in 20% and 12% of KI cells, respectively. In response to 10 nM isoproterenol, only DAD (but not TA) was observed in 11% of WT cells, whereas in KI cells the incidence of DAD and TA further increased to 60% and 38% of cells, respectively. Addition of GSH-CaM (100 nM) to KI cells decreased both DADs and TA (DAD: 38% of cells; TA: 10% of cells), whereas CaM (100 nM) had no appreciable effect. Addition of GSH-CaM to saponin-permeabilized KI cells decreased Ca2+ spark frequency (+33% of WT cells), which otherwise markedly increased without GSH-CaM (+100% of WT cells), whereas CaM revealed much less effect on the Ca2+ spark frequency (+76% of WT cells). Then, by incorporating CaM or GSH-CaM to intact cells (with protein delivery kit), we assessed the in situ effect of GSH-CaM (cytosolic [CaM] = ∼240 nM, cytosolic [GSH-CaM] = ∼230 nM) on the frequency of spontaneous Ca2+ transient (sCaT, % of total cells). Addition of 10 nM isoproterenol to KI cells increased sCaT after transient 5 Hz pacing (37%), whereas it was much more attenuated by GSH-CaM (9%) than by CaM (26%) (P < 0.01 vs CaM).

Conclusions

Several disorders in the RyR channel function characteristic of the CPVT-mutant cells (increased spontaneous Ca2+ leak, delayed afterdepolarization, triggered activity, Ca2+ spark frequency, spontaneous Ca2+ transients) can be corrected to a normal function by increasing the affinity of CaM binding to the RyR.  相似文献   
95.
96.
Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)–Ras–extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction.  相似文献   
97.
The downregulation of E-cadherin function has fundamental consequences with respect to cancer progression, and occurs as part of the epithelial–mesenchymal transition (EMT). In this study, we show that the expression of the Discosoma sp. red fluorescent protein (DsRed)-tagged cadherin cytoplasmic domain in cells inhibited the cell surface localization of endogenous E-cadherin, leading to morphological changes, the inhibition of junctional assembly and cell dissociation. These changes were associated with increased cell migration, but were not accompanied by the down-regulation of epithelial markers and up-regulation of mesenchymal markers. Thus, these changes cannot be classified as EMT. The cadherin cytoplasmic domain interacted with β-catenin or plakoglobin, reducing the levels of β-catenin or plakoglobin associated with E-cadherin, and raising the possibility that β-catenin and plakoglobin sequestration by these constructs induced E-cadherin intracellular localization. Accordingly, a cytoplasmic domain construct bearing mutations that weakened the interactions with β-catenin or plakoglobin did not impair junction formation and adhesion, indicating that the interaction with β-catenin or plakoglobin was essential to the potential of the constructs. E-cadherin–α-catenin chimeras that did not require β-catenin or plakoglobin for their cell surface transport restored cell–cell adhesion and junction formation.  相似文献   
98.
Termite gut flagellates are colonized by host‐specific lineages of ectosymbiotic and endosymbiotic bacteria. Previous studies have shown that flagellates of the genus Trichonympha may harbour more than one type of symbiont. Using a comprehensive approach that combined cloning of SSU rRNA genes with fluorescence in situ hybridization and electron microscopy, we investigated the phylogeny and subcellular locations of the symbionts in a variety of Trichonympha species from different termites. The flagellates in Trichonympha Cluster I were the only species associated with ‘Endomicrobia’, which were located in the posterior part of the cell, confirming previous results. Trichonympha species of Cluster II from the termite genus Incisitermes (family Kalotermitidae) lacked ‘Endomicrobia’ and were associated with endosymbiotic Actinobacteria, which is highly unusual. The endosymbionts, for which we suggest the name ‘Candidatus Ancillula trichonymphae’, represent a novel, deep‐branching lineage in the Micrococcineae that consists exclusively of clones from termite guts. They preferentially colonized the anterior part of the flagellate host and were highly abundant in all species of Trichonympha Cluster II except Trichonympha globulosa. Here, they were outnumbered by a Desulfovibrio species associated with the cytoplasmic lamellae at the anterior cell pole. Such symbionts are present in both Trichonympha clusters, but not in all species. Unlike the intracellular location reported for the Desulfovibrio symbionts of Trichonympha agilis (Cluster I), the Desulfovibrio symbionts of T. globulosa (Cluster II) were situated in deep invaginations of the plasma membrane that were clearly connected to the exterior of the host cell.  相似文献   
99.
We examined the influence of D177N (D178N in humans) mutation on the conformational stability of the S2 region of moPrPC with varying pHs by using the SDSL-ESR technique. The ESR spectrum of D177N at pH 7.5 was narrower than that of Y161R1, referred to as WT. The ESR spectrum of D177N did not change when pH in the solution decreased to pH 4.0. Our results suggested that the disappearance of a salt bridge (D177-R163) induced the increase in the instability of S2 region. Moreover, the line shape of the ESR spectrum obtained from H176S neighboring the salt bridge linked to the S2 region was similar to D177N. These results indicate that the protonation of H176 is strongly associated with the stability of S2 region. These findings are important for understanding the mechanism by which the disruption of the salt bridge in the S2 region forms the pathogenic PrPSc structure in hereditary prion disease.  相似文献   
100.
Parkinson's disease (PD) is characterized by selective depletion of nigral dopamine (DA) neurons containing neuromelanin (NM), suggesting the involvement of NM in the pathogenesis. This study reports induction of apoptosis by NM in SH-SY5Y cells, whereas protease-K-treated NM, synthesized DA- and cysteinyl dopamine melanin showed much less cytotoxicity. Cell death was mediated by mitochondria-mediated apoptotic pathway, namely collapse of mitochondrial membrane potential, release of cytochrome c , and activation of caspase 3, but Bcl-2 over-expression did not suppress apoptosis. NM increased sulfhydryl content in mitochondria, and a major part of it was identified as GSH, whereas dopamine melanin significantly reduced sulfhydryl levels. Western blot analysis for protein-bound GSH demonstrated that only NM reduced S -glutathionylated proteins in mitochondria and dissociated macromolecular structure of complex I. Reactive oxygen and nitrogen species were required for the deglutathionylation by NM, which antioxidants reduced significantly with prevention of apoptosis. These results suggest that NM may be related to cell death of DA neurons in PD and aging through regulation of mitochondrial redox state and S -glutathionylation, for which NM-associated protein is absolutely required. The novel function of NM is discussed in relation to the pathogenesis of PD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号